File size: 2,234 Bytes
3fcf3f4 73caf4c 3fcf3f4 73caf4c 3fcf3f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
base_model: microsoft/MiniLM-L12-H384-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: MiniLM_uncased_classification_tools_classifier-only_fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MiniLM_uncased_classification_tools_classifier-only_fr
This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0829
- Accuracy: 0.075
- Learning Rate: 0.0001
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 24
- eval_batch_size: 192
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Rate |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 7 | 2.0791 | 0.125 | 0.0001 |
| No log | 2.0 | 14 | 2.0797 | 0.075 | 0.0001 |
| No log | 3.0 | 21 | 2.0799 | 0.075 | 0.0001 |
| No log | 4.0 | 28 | 2.0804 | 0.075 | 0.0001 |
| No log | 5.0 | 35 | 2.0808 | 0.075 | 0.0001 |
| No log | 6.0 | 42 | 2.0813 | 0.075 | 9e-05 |
| No log | 7.0 | 49 | 2.0818 | 0.075 | 0.0001 |
| No log | 8.0 | 56 | 2.0820 | 0.075 | 0.0001 |
| No log | 9.0 | 63 | 2.0822 | 0.075 | 0.0001 |
| No log | 10.0 | 70 | 2.0827 | 0.075 | 0.0001 |
| No log | 11.0 | 77 | 2.0829 | 0.075 | 0.0001 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.1
|