Upload 2 files
Browse files- assignment.py +142 -0
- requirements.txt +4 -0
assignment.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
import requests
|
4 |
+
import pandas as pd
|
5 |
+
import re
|
6 |
+
|
7 |
+
# Agent Classes
|
8 |
+
class UseCaseAgent:
|
9 |
+
def __init__(self):
|
10 |
+
"""Agent to generate AI/ML use cases."""
|
11 |
+
self.generator = pipeline("text-generation", model="gpt2")
|
12 |
+
|
13 |
+
def generate_use_cases(self, industry, trends):
|
14 |
+
"""Generate 3 use cases with a brief debrief based on industry and trends."""
|
15 |
+
prompt = (
|
16 |
+
f"Industry: {industry}\n"
|
17 |
+
f"Trends: {trends}\n"
|
18 |
+
f"Suggest 3 AI/ML/GenAI use cases with a brief debrief for each to improve operations and customer satisfaction:"
|
19 |
+
"\n1. "
|
20 |
+
)
|
21 |
+
result = self.generator(prompt, max_length=300, num_return_sequences=1)
|
22 |
+
use_cases = result[0]["generated_text"]
|
23 |
+
|
24 |
+
# Format the output into a list by extracting each line that starts with a number
|
25 |
+
use_case_list = re.findall(r'\d+\.\s*(.*?)(?:\n|$)', use_cases)
|
26 |
+
|
27 |
+
# Limit the use cases to 3
|
28 |
+
return use_case_list[:3]
|
29 |
+
|
30 |
+
|
31 |
+
class ResourceAgent:
|
32 |
+
def __init__(self):
|
33 |
+
"""Agent to search and retrieve datasets."""
|
34 |
+
pass
|
35 |
+
|
36 |
+
def search_huggingface(self, query):
|
37 |
+
"""Search datasets on HuggingFace."""
|
38 |
+
hf_url = f"https://huggingface.co/api/models?search={query}"
|
39 |
+
response = requests.get(hf_url)
|
40 |
+
return response.json()[:5] if response.status_code == 200 else []
|
41 |
+
|
42 |
+
def search_kaggle(self, query):
|
43 |
+
"""Search datasets on Kaggle."""
|
44 |
+
kaggle_url = f"https://www.kaggle.com/api/v1/datasets/list?search={query}"
|
45 |
+
response = requests.get(kaggle_url)
|
46 |
+
return response.json()[:5] if response.status_code == 200 else []
|
47 |
+
|
48 |
+
|
49 |
+
# Multi-Agent System
|
50 |
+
class MultiAgentSystem:
|
51 |
+
def __init__(self):
|
52 |
+
self.use_case_agent = UseCaseAgent()
|
53 |
+
self.resource_agent = ResourceAgent()
|
54 |
+
|
55 |
+
def process_query(self, industry_query, trends_query):
|
56 |
+
"""End-to-end query processing."""
|
57 |
+
use_cases = self.use_case_agent.generate_use_cases(industry_query, trends_query)
|
58 |
+
return use_cases
|
59 |
+
|
60 |
+
def fetch_datasets(self, use_cases):
|
61 |
+
"""Fetch relevant datasets based on generated use cases."""
|
62 |
+
keywords = self.extract_keywords(use_cases)
|
63 |
+
datasets = {}
|
64 |
+
|
65 |
+
for keyword in keywords:
|
66 |
+
hf_datasets = self.resource_agent.search_huggingface(keyword)
|
67 |
+
kaggle_datasets = self.resource_agent.search_kaggle(keyword)
|
68 |
+
datasets[keyword] = {
|
69 |
+
"huggingface": hf_datasets,
|
70 |
+
"kaggle": kaggle_datasets
|
71 |
+
}
|
72 |
+
return datasets
|
73 |
+
|
74 |
+
def extract_keywords(self, use_cases):
|
75 |
+
"""Extract relevant keywords from use cases for dataset search."""
|
76 |
+
# Simple keyword extraction: split by spaces and take the first two words as keywords
|
77 |
+
keywords = set()
|
78 |
+
for use_case in use_cases:
|
79 |
+
words = re.findall(r'\w+', use_case)
|
80 |
+
if words:
|
81 |
+
keywords.add(words[0]) # For simplicity, take the first word as a keyword
|
82 |
+
return list(keywords)
|
83 |
+
|
84 |
+
|
85 |
+
# Streamlit UI
|
86 |
+
def run_streamlit_ui():
|
87 |
+
st.title("Market Research & AI Use Case Generator")
|
88 |
+
st.write("Generate actionable insights and find relevant datasets.")
|
89 |
+
|
90 |
+
mas = MultiAgentSystem()
|
91 |
+
|
92 |
+
# Trends and Use Case Generation
|
93 |
+
st.header("AI/ML Use Case Generation")
|
94 |
+
industry_query = st.text_input("Enter industry/company:")
|
95 |
+
st.caption("Example: Automotive, Retail, Healthcare, etc.")
|
96 |
+
trends_query = st.text_input("Enter industry trends or focus areas:")
|
97 |
+
st.caption("Example: Supply chain optimization, Customer experience, etc.")
|
98 |
+
|
99 |
+
# Store use cases in session state
|
100 |
+
if "use_cases" not in st.session_state:
|
101 |
+
st.session_state["use_cases"] = []
|
102 |
+
|
103 |
+
if st.button("Generate Use Cases"):
|
104 |
+
with st.spinner("Generating insights..."):
|
105 |
+
st.session_state["use_cases"] = mas.process_query(industry_query, trends_query)
|
106 |
+
st.subheader("Proposed Use Cases")
|
107 |
+
for i, use_case in enumerate(st.session_state["use_cases"], start=1):
|
108 |
+
st.write(f"**Use Case {i}:** {use_case}")
|
109 |
+
|
110 |
+
# Add a button to search for relevant datasets
|
111 |
+
if st.session_state["use_cases"]:
|
112 |
+
st.subheader("Search for Relevant Datasets")
|
113 |
+
if st.button("Search Datasets"):
|
114 |
+
with st.spinner("Searching datasets..."):
|
115 |
+
datasets = mas.fetch_datasets(st.session_state["use_cases"])
|
116 |
+
|
117 |
+
for keyword, dataset_info in datasets.items():
|
118 |
+
st.write(f"### Datasets related to: {keyword}")
|
119 |
+
|
120 |
+
# HuggingFace Datasets
|
121 |
+
st.subheader("HuggingFace Datasets")
|
122 |
+
if dataset_info["huggingface"]:
|
123 |
+
for dataset in dataset_info["huggingface"]:
|
124 |
+
dataset_id = dataset.get('modelId', 'Unknown ID')
|
125 |
+
dataset_url = f"https://huggingface.co/models/{dataset_id}"
|
126 |
+
st.write(f"- [{dataset_id}]({dataset_url})")
|
127 |
+
else:
|
128 |
+
st.write("No relevant datasets found on HuggingFace.")
|
129 |
+
|
130 |
+
# Kaggle Datasets
|
131 |
+
st.subheader("Kaggle Datasets")
|
132 |
+
if dataset_info["kaggle"]:
|
133 |
+
for dataset in dataset_info["kaggle"]:
|
134 |
+
dataset_title = dataset.get('title', 'Unknown Title')
|
135 |
+
dataset_url = dataset.get('url', '#')
|
136 |
+
st.write(f"- [{dataset_title}]({dataset_url})")
|
137 |
+
else:
|
138 |
+
st.write("No relevant datasets found on Kaggle.")
|
139 |
+
|
140 |
+
|
141 |
+
if __name__ == "__main__":
|
142 |
+
run_streamlit_ui()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
transformers
|
4 |
+
requests
|