File size: 2,343 Bytes
bafdebb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
base_model: aubmindlab/bert-base-arabertv02-twitter
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Improved-Arabert-twitter-sentiment-No-dropout-Twitter
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Improved-Arabert-twitter-sentiment-No-dropout-Twitter
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6342
- Accuracy: 0.89
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5264 | 0.55 | 50 | 0.5252 | 0.71 |
| 0.3041 | 1.1 | 100 | 0.4085 | 0.81 |
| 0.2205 | 1.65 | 150 | 0.3303 | 0.88 |
| 0.1476 | 2.2 | 200 | 0.3890 | 0.87 |
| 0.1219 | 2.75 | 250 | 0.3775 | 0.87 |
| 0.0972 | 3.3 | 300 | 0.3930 | 0.88 |
| 0.0917 | 3.85 | 350 | 0.4728 | 0.86 |
| 0.0596 | 4.4 | 400 | 0.4406 | 0.89 |
| 0.0556 | 4.95 | 450 | 0.4949 | 0.89 |
| 0.0375 | 5.49 | 500 | 0.4935 | 0.9 |
| 0.0269 | 6.04 | 550 | 0.5977 | 0.88 |
| 0.0235 | 6.59 | 600 | 0.5543 | 0.89 |
| 0.0191 | 7.14 | 650 | 0.5941 | 0.88 |
| 0.0109 | 7.69 | 700 | 0.6562 | 0.89 |
| 0.0198 | 8.24 | 750 | 0.6342 | 0.89 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.7
- Tokenizers 0.14.1
|