--- license: mit base_model: indolem/indobert-base-uncased tags: - generated_from_trainer datasets: - indonlu_nergrit metrics: - precision - recall - f1 - accuracy model-index: - name: belajarner results: - task: name: Token Classification type: token-classification dataset: name: indonlu_nergrit type: indonlu_nergrit config: indonlu_nergrit_source split: validation args: indonlu_nergrit_source metrics: - name: Precision type: precision value: 0.8400335008375209 - name: Recall type: recall value: 0.8631669535283993 - name: F1 type: f1 value: 0.8514431239388794 - name: Accuracy type: accuracy value: 0.949652118912081 --- # belajarner This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the indonlu_nergrit dataset. It achieves the following results on the evaluation set: - Loss: 0.2914 - Precision: 0.8400 - Recall: 0.8632 - F1: 0.8514 - Accuracy: 0.9497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 209 | 0.2655 | 0.8163 | 0.8718 | 0.8431 | 0.9424 | | No log | 2.0 | 418 | 0.2315 | 0.8146 | 0.8546 | 0.8341 | 0.9486 | | 0.04 | 3.0 | 627 | 0.2466 | 0.8291 | 0.8640 | 0.8462 | 0.9470 | | 0.04 | 4.0 | 836 | 0.2412 | 0.8322 | 0.8623 | 0.8470 | 0.9503 | | 0.03 | 5.0 | 1045 | 0.2636 | 0.8386 | 0.8898 | 0.8635 | 0.9521 | | 0.03 | 6.0 | 1254 | 0.2830 | 0.8399 | 0.8623 | 0.8510 | 0.9497 | | 0.03 | 7.0 | 1463 | 0.2848 | 0.8376 | 0.8657 | 0.8515 | 0.9500 | | 0.013 | 8.0 | 1672 | 0.2914 | 0.8400 | 0.8632 | 0.8514 | 0.9497 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2