ArafatBHossain commited on
Commit
f8ff356
1 Parent(s): 51df1c4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: bert-distilled-twitter-sent140_dataset_hp_optimized_final
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # bert-distilled-twitter-sent140_dataset_hp_optimized_final
16
+
17
+ This model is a fine-tuned version of [ArafatBHossain/distilbert-base-uncased_fine_tuned_sent140](https://huggingface.co/ArafatBHossain/distilbert-base-uncased_fine_tuned_sent140) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.7526
20
+ - Accuracy: 0.7701
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 1.0252171333853176e-05
40
+ - train_batch_size: 8
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 5
46
+ - mixed_precision_training: Native AMP
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 0.5666 | 1.0 | 408 | 0.7110 | 0.7647 |
53
+ | 0.501 | 2.0 | 816 | 0.7382 | 0.7567 |
54
+ | 0.5199 | 3.0 | 1224 | 0.7562 | 0.7674 |
55
+ | 0.4972 | 4.0 | 1632 | 0.7502 | 0.7647 |
56
+ | 0.4498 | 5.0 | 2040 | 0.7526 | 0.7701 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.25.1
62
+ - Pytorch 1.11.0
63
+ - Datasets 2.7.1
64
+ - Tokenizers 0.12.1