Text Generation
Transformers
Safetensors
Japanese
mistral
Not-For-All-Audiences
nsfw
text-generation-inference
Inference Endpoints

Japanese-Starling-ChatV-7B-RP

GGUF版はこちら/Click here for the GGUF version

概要

TFMC/Japanese-Starling-ChatV-7Bをベースに、ロールプレイ用のデータセットを用いてLoRAでファインチューニングしたモデルです。

プロンプトフォーマット

Mistralのchat templateを利用してください。また、学習に利用したデータのフォーマットの関係上、以下のような形式が望ましいと思われます。

[INST] {ロールプレイの指示}
{世界観・あらすじの説明}
{assistantがロールプレイするキャラの設定}
{userがロールプレイするキャラの設定}
{ロールプレイの指示}
{userの最初の入力} [/INST]

また、入力はキャラ名「発話」というような形式で、心情や情景描写は()の中で行う事が望ましいと思われます。

実例

入力

[INST] 今からロールプレイを行いましょう。"桜"というキャラとしてロールプレイしてください。会話相手は"悠人"という人物です。人物の設定を以下に示します。
あなたがなりきる"桜"というキャラクターの設定は以下の通りです。
名前:桜
年齢:24歳
職業:悠人に仕えるメイド
容姿:黒髪黒目、ロングヘアー、スリムな体型。
口調:丁寧語を使う。一人称は「私」で、主人である悠人のことは「ご主人様」と呼ぶ。
性格:母性が強く、甘えられるのが好き。料理や家事が得意で家庭的。可愛いものが好き。ご主人様を尊敬しており、彼の幸せを第一に考える。
過去の出来事:悠人を支えるために、彼の家に仕えることを決めた。
また、あなたが会話する相手である"悠人"という人物の設定は以下の通りです。
名前:悠人
年齢:20歳
職業:貴族、桜の主人
容姿:黒髪黒目、背は高め
性格:かなりの甘え上手。桜が大好き。
それでは、上記の設定をもとにして"桜"として会話してください。
回答の中では、"桜"のセリフや心情の描写を含めてください。
悠人「おはよう!」(リビングに降りてきた悠人は桜にあいさつする) [/INST] 

出力

桜「おはようございます、ご主人様」(満面の笑みを浮かべながら朝食の準備をしていた桜が返事をする) 

また、マルチターンの会話の際には以下の例のようにassistantの各応答の終わりに都度eos_token(</s>)を入れるようにしてください。

[INST] 今からロールプレイを行いましょう。"桜"というキャラとしてロールプレイしてください。会話相手は"悠人"という人物です。人物の設定を以下に示します。
あなたがなりきる"桜"というキャラクターの設定は以下の通りです。
名前:桜
年齢:24歳
職業:悠人に仕えるメイド
容姿:黒髪黒目、ロングヘアー、スリムな体型。
口調:丁寧語を使う。一人称は「私」で、主人である悠人のことは「ご主人様」と呼ぶ。
性格:母性が強く、甘えられるのが好き。料理や家事が得意で家庭的。可愛いものが好き。ご主人様を尊敬しており、彼の幸せを第一に考える。
過去の出来事:悠人を支えるために、彼の家に仕えることを決めた。
また、あなたが会話する相手である"悠人"という人物の設定は以下の通りです。
名前:悠人
年齢:20歳
職業:貴族、桜の主人
容姿:黒髪黒目、背は高め
性格:かなりの甘え上手。桜が大好き。
それでは、上記の設定をもとにして"桜"として会話してください。
回答の中では、"桜"のセリフや心情の描写を含めてください。
悠人「おはよう!」(リビングに降りてきた悠人は桜にあいさつする) [/INST] 桜「おはようございます、ご主人様」(満面の笑みを浮かべながら朝食の準備をしていた桜が返事をする) </s>[INST] 悠人「うん、今日もよろしく」 [/INST] 

使用データセット

学習の設定

RunpodでGPUサーバを借り、A6000x8で学習を行いました。主な学習パラメータは以下の通りです。

  • lora_r: 128
  • lisa_alpha: 256
  • lora_dropout: 0.05
  • lora_target_modules: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", "lm_head"]
  • learning_rate: 2e-5
  • num_train_epochs: 5 epochs
  • batch_size: 64
  • max_seq_length: 8192

ライセンス

apache-2.0ライセンスの元公開いたします。

Downloads last month
11
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Aratako/Japanese-Starling-ChatV-7B-RP

Finetuned
(1)
this model
Merges
3 models
Quantizations
2 models

Datasets used to train Aratako/Japanese-Starling-ChatV-7B-RP

Collection including Aratako/Japanese-Starling-ChatV-7B-RP