--- language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - Arbi-Houssem/Tunisian_dataset_STT-TTS15s_filtred1.0_Mixed metrics: - wer model-index: - name: Whisper Tunisien results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Tunisian_dataset_STT-TTS15s_filtred1.0_Mixed type: Arbi-Houssem/Tunisian_dataset_STT-TTS15s_filtred1.0_Mixed args: 'config: ar, split: test' metrics: - name: Wer type: wer value: 53.55042318175298 --- # Whisper Tunisien This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Tunisian_dataset_STT-TTS15s_filtred1.0_Mixed dataset. It achieves the following results on the evaluation set: - Loss: 0.9262 - Wer: 53.5504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 1.0933 | 4.5045 | 500 | 1.1956 | 61.0242 | | 0.7416 | 9.0090 | 1000 | 0.9971 | 56.0895 | | 0.5403 | 13.5135 | 1500 | 0.9140 | 53.4644 | | 0.4315 | 18.0180 | 2000 | 0.8778 | 53.3783 | | 0.2836 | 22.5225 | 2500 | 0.8948 | 53.0627 | | 0.2513 | 27.0270 | 3000 | 0.9099 | 53.5074 | | 0.2196 | 31.5315 | 3500 | 0.9215 | 53.6365 | | 0.2199 | 36.0360 | 4000 | 0.9262 | 53.5504 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1