added metrics
Browse files
README.md
CHANGED
@@ -4,53 +4,103 @@ tags:
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
-
# {MODEL_NAME}
|
11 |
|
12 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
|
|
|
|
25 |
|
26 |
```python
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
model = SentenceTransformer('{MODEL_NAME}')
|
31 |
-
embeddings = model.encode(sentences)
|
32 |
-
print(embeddings)
|
33 |
```
|
34 |
|
|
|
35 |
|
|
|
|
|
|
|
36 |
|
37 |
-
##
|
38 |
|
39 |
-
|
|
|
40 |
|
41 |
-
|
42 |
|
|
|
43 |
|
|
|
|
|
44 |
|
45 |
-
## Full Model Architecture
|
46 |
-
```
|
47 |
-
SentenceTransformer(
|
48 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
49 |
-
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
50 |
-
(2): Normalize()
|
51 |
-
)
|
52 |
-
```
|
53 |
|
54 |
-
|
|
|
|
|
55 |
|
56 |
-
|
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
+
- embeddings
|
8 |
+
- legal
|
9 |
+
- USCode
|
10 |
+
license: apache-2.0
|
11 |
+
datasets:
|
12 |
+
- ArchitRastogi/USCode-QAPairs-Finetuning
|
13 |
+
model_creator: Archit Rastogi
|
14 |
+
language:
|
15 |
+
- en
|
16 |
+
library_name: transformers
|
17 |
+
base_model: BGE-Small
|
18 |
+
fine_tuned_from: sentence-transformers/BGE-Small
|
19 |
+
task_categories:
|
20 |
+
- sentence-similarity
|
21 |
+
- embeddings
|
22 |
+
- feature-extraction
|
23 |
+
model-index:
|
24 |
+
- name: BGE-Small-LegalEmbeddings-USCode
|
25 |
+
results:
|
26 |
+
- task:
|
27 |
+
type: sentence-similarity
|
28 |
+
dataset:
|
29 |
+
name: USCode-QAPairs-Finetuning
|
30 |
+
type: USCode-QAPairs-Finetuning
|
31 |
+
metrics:
|
32 |
+
- name: Accuracy
|
33 |
+
type: Accuracy
|
34 |
+
value: 72
|
35 |
+
- name: Recall
|
36 |
+
type: Recall
|
37 |
+
value: 75
|
38 |
+
source:
|
39 |
+
name: Evaluation on USLawQA Dataset
|
40 |
+
url: https://huggingface.co/datasets/ArchitRastogi/USLawQA
|
41 |
---
|
42 |
|
|
|
43 |
|
|
|
44 |
|
45 |
+
# BGE-Small Fine-Tuned on USCode-QueryPairs
|
46 |
|
47 |
+
This is a fine-tuned version of the BGE Small embedding model, trained on the [USCode-QueryPairs](https://huggingface.co/datasets/ArchitRastogi/USCode-QueryPairs) dataset, a subset of the [USLawQA](https://huggingface.co/datasets/ArchitRastogi/USLawQA) corpus. The model is optimized for generating embeddings for legal text, achieving 75% accuracy on the test set.
|
48 |
|
49 |
+
## Overview
|
50 |
|
51 |
+
- **Base Model**: BGE Small
|
52 |
+
- **Dataset**: [USCode-QueryPairs](https://huggingface.co/datasets/ArchitRastogi/USCode-QueryPairs)
|
53 |
+
- **Training Details**:
|
54 |
+
- **Hardware**: Google Colab (T4 GPU)
|
55 |
+
- **Training Time**: 2 hours
|
56 |
+
- **Accuracy**: 75% on the test set from [USLawQA](https://huggingface.co/datasets/ArchitRastogi/USLawQA)
|
57 |
+
|
58 |
+
## Applications
|
59 |
+
|
60 |
+
This model is ideal for:
|
61 |
+
- **Legal Text Retrieval**: Efficient semantic search across legal documents.
|
62 |
+
- **Question Answering**: Answering legal queries based on context from the US Code.
|
63 |
+
- **Embeddings Generation**: Generating high-quality embeddings for downstream legal NLP tasks.
|
64 |
|
65 |
+
## Usage
|
66 |
+
|
67 |
+
The model can be used with `model.encode` for generating embeddings. Below is an example usage snippet:
|
68 |
|
69 |
```python
|
70 |
+
# Load model directly
|
71 |
+
from transformers import AutoTokenizer, AutoModel
|
72 |
+
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained("model name")
|
74 |
+
model = AutoModel.from_pretrained("model name")
|
75 |
+
text = "Duties of the president"
|
76 |
+
inputs = tokenizer(text, return_tensors="pt")
|
77 |
+
outputs = model(**inputs)
|
78 |
+
#Printing the Embeddings
|
79 |
+
print(output)
|
80 |
|
|
|
|
|
|
|
81 |
```
|
82 |
|
83 |
+
## Evaluation
|
84 |
|
85 |
+
The model was evaluated on the test set of [USLawQA](https://huggingface.co/datasets/ArchitRastogi/USLawQA) and achieved the following metrics:
|
86 |
+
- **Accuracy**: 75%
|
87 |
+
- **Task**: Semantic similarity and legal question answering.
|
88 |
|
89 |
+
## Related Resources
|
90 |
|
91 |
+
- [USCode-QueryPairs Dataset](https://huggingface.co/datasets/ArchitRastogi/USCode-QueryPairs)
|
92 |
+
- [USLawQA Corpus](https://huggingface.co/datasets/ArchitRastogi/USLawQA)
|
93 |
|
94 |
+
## 📧 Contact
|
95 |
|
96 |
+
For any inquiries, suggestions, or feedback, feel free to reach out:
|
97 |
|
98 |
+
**Archit Rastogi**
|
99 |
+
📧 [[email protected]](mailto:[email protected])
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
---
|
103 |
+
|
104 |
+
## 📜 License
|
105 |
|
106 |
+
This dataset is distributed under the [Apache 2.0 License](LICENSE). Please ensure compliance with applicable copyright laws when using this dataset.
|