ArchitRastogi commited on
Commit
7a086c0
1 Parent(s): 6137d84
Files changed (1) hide show
  1. README.md +88 -3
README.md CHANGED
@@ -1,3 +1,88 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - ArchitRastogi/Italian-BERT-FineTuning-Embeddings
5
+ language:
6
+ - it
7
+ base_model:
8
+ - dbmdz/bert-base-italian-xxl-uncased
9
+ ---
10
+
11
+ # bert-base-italian-embeddings: A Fine-Tuned Italian BERT Model for IR and RAG Applications
12
+
13
+ ## Model Overview
14
+
15
+ This model is a fine-tuned version of [dbmdz/bert-base-italian-xxl-uncased](https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased) tailored for Italian language Information Retrieval (IR) and Retrieval-Augmented Generation (RAG) tasks. It leverages contrastive learning to generate high-quality embeddings suitable for both industry and academic applications.
16
+
17
+ ## Model Size
18
+
19
+ - **Size**: Approximately 450 MB
20
+
21
+ ## Training Details
22
+
23
+ - **Base Model**: [dbmdz/bert-base-italian-xxl-uncased](https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased)
24
+ - **Dataset**: [Italian-BERT-FineTuning-Embeddings](https://huggingface.co/datasets/ArchitRastogi/Italian-BERT-FineTuning-Embeddings)
25
+ - Derived from the C4 dataset using sliding window segmentation and in-document sampling.
26
+ - **Size**: ~5GB (4.5GB train, 0.5GB test)
27
+ - **Training Configuration**:
28
+ - **Hardware**: NVIDIA A40 GPU
29
+ - **Epochs**: 3
30
+ - **Total Steps**: 922,958
31
+ - **Training Time**: Approximately 5 days, 2 hours, and 23 minutes
32
+ - **Training Objective**: Contrastive Learning
33
+
34
+ ## Evaluation Metrics
35
+
36
+ Evaluations were performed using the [mMARCO](https://github.com/unicamp-dl/mMARCO) dataset, a multilingual version of MS MARCO. The model was assessed on 6,980 queries.
37
+
38
+ ### Results Comparison
39
+
40
+ | Metric | Base Model (`dbmdz/bert-base-italian-xxl-uncased`) | `facebook/mcontriever-msmarco` | **Fine-Tuned Model** |
41
+ |---------------------|----------------------------------------------------|--------------------------------|----------------------|
42
+ | **Recall@1** | 0.0026 | 0.0828 | **0.2106** |
43
+ | **Recall@100** | 0.0417 | 0.5028 | **0.8356** |
44
+ | **Recall@1000** | 0.2061 | 0.8049 | **0.9719** |
45
+ | **Average Precision** | 0.0050 | 0.1397 | **0.3173** |
46
+ | **NDCG@10** | 0.0043 | 0.1591 | **0.3601** |
47
+ | **NDCG@100** | 0.0108 | 0.2086 | **0.4218** |
48
+ | **NDCG@1000** | 0.0299 | 0.2454 | **0.4391** |
49
+ | **MRR@10** | 0.0036 | 0.1299 | **0.3047** |
50
+ | **MRR@100** | 0.0045 | 0.1385 | **0.3167** |
51
+ | **MRR@1000** | 0.0050 | 0.1397 | **0.3173** |
52
+
53
+ **Note**: The fine-tuned model significantly outperforms both the base model and `facebook/mcontriever-msmarco` across all metrics.
54
+
55
+ ## Usage
56
+
57
+ You can load and use the model directly with the Hugging Face Transformers library:
58
+ ```python
59
+ # Load model directly
60
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
61
+
62
+ tokenizer = AutoTokenizer.from_pretrained("ArchitRastogi/bert-base-italian-embeddings")
63
+ model = AutoModelForMaskedLM.from_pretrained("ArchitRastogi/bert-base-italian-embeddings")
64
+
65
+ # Example usage
66
+ text = "Stanchi di non riuscire a trovare il partner perfetto?"
67
+ inputs = tokenizer(text, return_tensors="pt")
68
+ outputs = model(**inputs)
69
+ ```
70
+
71
+ ## Intended Use
72
+ This model is intended for:
73
+
74
+ - Information Retrieval (IR): Enhancing search engines and retrieval systems in the Italian language.
75
+ - Retrieval-Augmented Generation (RAG): Improving the quality of generated content by providing relevant context.
76
+
77
+ Suitable for both industry applications and academic research.
78
+
79
+ ## Limitations
80
+ - The model may inherit biases present in the C4 dataset.
81
+ - Performance is primarily evaluated on mMARCO; results may vary with other datasets.
82
+
83
+ ---
84
+
85
+ ## Contact
86
+
87
+ **Archit Rastogi**
88