ArekuNoimar commited on
Commit
90d5128
·
verified ·
1 Parent(s): 416336c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -195
README.md CHANGED
@@ -1,199 +1,79 @@
1
  ---
 
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: llama2
3
+ language:
4
+ - ja
5
+ - en
6
  library_name: transformers
7
+ tags:
8
+ - japanese
9
+ datasets:
10
+ - cyberagent/chatbot-arena-ja-calm2-7b-chat-experimental
11
+ base_model:
12
+ - meta-llama/Llama-2-7b-hf
13
  ---
14
 
15
+ ## llama-2-7b-hf-instruct-chatbot-arena-ja-v3
16
+
17
+ ## モデルについて
18
+
19
+ このモデルはmeta/llama-2-7b-hfにcyberagent/chatbot-arena-ja-calm2-7b-chat-experimentalデータセットを使用し、QLoRAでFine-Tuningを実施したモデルです。
20
+
21
+ ## 注意点
22
+ QLoRAでトレーニングを実施しておりますが、アップロードされている重みはベースモデルのmeta/llama-2-7b-hfとトレーニングした重みのアダプターをPeftライブラリでマージしたものになっています。
23
+ その為、量子化設定を利用しない場合は意図した精度と異なる動作をする場合があります。
24
+
25
+ ## 使い方
26
+
27
+ ```python
28
+ from huggingface_hub import snapshot_download
29
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, BitsAndBytesConfig
30
+ import torch
31
+
32
+ def generate_response(model, tokenizer, prompt, device):
33
+ """
34
+ 指定されたプロンプトに対して、モデルを用いてテキスト生成を実行し、
35
+ 生成されたテキスト応答を返却する関数です。
36
+
37
+ Args:
38
+ model: 使用する因果言語モデル (AutoModelForCausalLM)
39
+ tokenizer: モデルに対応するトークナイザー (AutoTokenizer)
40
+ prompt: テキスト生成の入力として与えるプロンプト文字列
41
+ device: テンソルを転送するデバイス(例: "cuda" "cpu")
42
+
43
+ Returns:
44
+ 生成されたテキスト応答(特殊トークンを除外してデコード済みの文字列)
45
+ """
46
+ inputs = tokenizer(prompt, return_tensors="pt") # テンソル変換
47
+ inputs = {key: tensor.to(device) for key, tensor in inputs.items()} # デバイスに転送
48
+ output = model.generate(**inputs, streamer=streamer) # TextStreamerを用いてテキスト生成を実行
49
+ return tokenizer.decode(output[0], skip_special_tokens=True, max_new_tokens=1024) # 生成されたトークンをデコード
50
+
51
+
52
+ device = "cuda" # 使用するデバイスを "cuda" (GPU)に設定
53
+ prompt = "AIについて簡潔に教えてください。" # テキスト生成用の入力プロンプトを定義
54
+
55
+ # 量子化の設定: 8-bitロードを行い、4-bit計算時にtorch.float16を使用する設定を適用
56
+ bnb_config = BitsAndBytesConfig(
57
+ load_in_4bit=True, # モデルを4bitでロードする設定
58
+ bnb_4bit_use_double_quant=True, # 二重量子化の使用を指定
59
+ bnb_4bit_quant_type="nf4", # 量子化タイプを「nf4」に設定
60
+ bnb_4bit_compute_dtype=torch.bfloat16, # 計算時のデータ型をbfloat16に設定
61
+ )
62
+
63
+ # モデルをダウンロード
64
+ model_name = snapshot_download(
65
+ repo_id="ArekuNoimar/llama-2-7b-hf-instruct-chatbot-arena-ja-v3" # モデルのリポジトリID
66
+ )
67
+
68
+ # 量子化設定およびデバイスマッピングを適用
69
+ model = AutoModelForCausalLM.from_pretrained(
70
+ model_name, # ダウンロードしたモデルのパス
71
+ device_map=device, # テンソルを動作させるデバイス("cuda")を指定
72
+ quantization_config=bnb_config, # 設定した量子化設定を適用
73
+ torch_dtype=torch.bfloat16 # モデルの計算に使用するデータ型をbfloat16に指定
74
+ )
75
+
76
+ tokenizer = AutoTokenizer.from_pretrained(model_name) # トークナイザーの読み込み
77
+ streamer = TextStreamer(tokenizer, skip_prompt=False, skip_special_tokens=False) # TextStreamerを初期化
78
+ generate_response(model, tokenizer, prompt, device) # 関数を呼び出してテキストを生成
79
+ ```