Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,79 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
##
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: llama2
|
3 |
+
language:
|
4 |
+
- ja
|
5 |
+
- en
|
6 |
library_name: transformers
|
7 |
+
tags:
|
8 |
+
- japanese
|
9 |
+
datasets:
|
10 |
+
- cyberagent/chatbot-arena-ja-calm2-7b-chat-experimental
|
11 |
+
base_model:
|
12 |
+
- meta-llama/Llama-2-7b-hf
|
13 |
---
|
14 |
|
15 |
+
## llama-2-7b-hf-instruct-chatbot-arena-ja-v3
|
16 |
+
|
17 |
+
## モデルについて
|
18 |
+
|
19 |
+
このモデルはmeta/llama-2-7b-hfにcyberagent/chatbot-arena-ja-calm2-7b-chat-experimentalデータセットを使用し、QLoRAでFine-Tuningを実施したモデルです。
|
20 |
+
|
21 |
+
## 注意点
|
22 |
+
QLoRAでトレーニングを実施しておりますが、アップロードされている重みはベースモデルのmeta/llama-2-7b-hfとトレーニングした重みのアダプターをPeftライブラリでマージしたものになっています。
|
23 |
+
その為、量子化設定を利用しない場合は意図した精度と異なる動作をする場合があります。
|
24 |
+
|
25 |
+
## 使い方
|
26 |
+
|
27 |
+
```python
|
28 |
+
from huggingface_hub import snapshot_download
|
29 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, BitsAndBytesConfig
|
30 |
+
import torch
|
31 |
+
|
32 |
+
def generate_response(model, tokenizer, prompt, device):
|
33 |
+
"""
|
34 |
+
指定されたプロンプトに対して、モデルを用いてテキスト生成を実行し、
|
35 |
+
生成されたテキスト応答を返却する関数です。
|
36 |
+
|
37 |
+
Args:
|
38 |
+
model: 使用する因果言語モデル (AutoModelForCausalLM)
|
39 |
+
tokenizer: モデルに対応するトークナイザー (AutoTokenizer)
|
40 |
+
prompt: テキスト生成の入力として与えるプロンプト文字列
|
41 |
+
device: テンソルを転送するデバイス(例: "cuda" や "cpu")
|
42 |
+
|
43 |
+
Returns:
|
44 |
+
生成されたテキスト応答(特殊トークンを除外してデコード済みの文字列)
|
45 |
+
"""
|
46 |
+
inputs = tokenizer(prompt, return_tensors="pt") # テンソル変換
|
47 |
+
inputs = {key: tensor.to(device) for key, tensor in inputs.items()} # デバイスに転送
|
48 |
+
output = model.generate(**inputs, streamer=streamer) # TextStreamerを用いてテキスト生成を実行
|
49 |
+
return tokenizer.decode(output[0], skip_special_tokens=True, max_new_tokens=1024) # 生成されたトークンをデコード
|
50 |
+
|
51 |
+
|
52 |
+
device = "cuda" # 使用するデバイスを "cuda" (GPU)に設定
|
53 |
+
prompt = "AIについて簡潔に教えてください。" # テキスト生成用の入力プロンプトを定義
|
54 |
+
|
55 |
+
# 量子化の設定: 8-bitロードを行い、4-bit計算時にtorch.float16を使用する設定を適用
|
56 |
+
bnb_config = BitsAndBytesConfig(
|
57 |
+
load_in_4bit=True, # モデルを4bitでロードする設定
|
58 |
+
bnb_4bit_use_double_quant=True, # 二重量子化の使用を指定
|
59 |
+
bnb_4bit_quant_type="nf4", # 量子化タイプを「nf4」に設定
|
60 |
+
bnb_4bit_compute_dtype=torch.bfloat16, # 計算時のデータ型をbfloat16に設定
|
61 |
+
)
|
62 |
+
|
63 |
+
# モデルをダウンロード
|
64 |
+
model_name = snapshot_download(
|
65 |
+
repo_id="ArekuNoimar/llama-2-7b-hf-instruct-chatbot-arena-ja-v3" # モデルのリポジトリID
|
66 |
+
)
|
67 |
+
|
68 |
+
# 量子化設定およびデバイスマッピングを適用
|
69 |
+
model = AutoModelForCausalLM.from_pretrained(
|
70 |
+
model_name, # ダウンロードしたモデルのパス
|
71 |
+
device_map=device, # テンソルを動作させるデバイス("cuda")を指定
|
72 |
+
quantization_config=bnb_config, # 設定した量子化設定を適用
|
73 |
+
torch_dtype=torch.bfloat16 # モデルの計算に使用するデータ型をbfloat16に指定
|
74 |
+
)
|
75 |
+
|
76 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name) # トークナイザーの読み込み
|
77 |
+
streamer = TextStreamer(tokenizer, skip_prompt=False, skip_special_tokens=False) # TextStreamerを初期化
|
78 |
+
generate_response(model, tokenizer, prompt, device) # 関数を呼び出してテキストを生成
|
79 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|