--- library_name: keras license: mit --- ## Model description ### the hepler function (requirements: `numpy Pillow`) ```python import numpy as np from PIL import Image def predict(model, img): pil_image = img pil_image = pil_image.resize((64, 64)) image_array = np.array(pil_image) / 255.0 image_array = np.expand_dims(image_array, axis=0) input_shape = (64, 64, pil_image.mode == 'RGB' and 3 or 1) decimal_prediction = model.predict(image_array)[0][0] return decimal_prediction ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | False | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot
View Model Plot ![Model Image](./model.png)