Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 245.36 +/- 39.74
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3f49378040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3f493780d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3f49378160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3f493781f0>", "_build": "<function ActorCriticPolicy._build at 0x7f3f49378280>", "forward": "<function ActorCriticPolicy.forward at 0x7f3f49378310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3f493783a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3f49378430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3f493784c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3f49378550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3f493785e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3f493742d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673360162764422995, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAA3sgr2P1my6Ob/Lu4RfKzbD3QK4feKYtQAAgD8AAIA/ZkYyOqRAVblSY+e71RKPNkSu0LvLggW2AACAPwAAgD96qrm+3+5pP/U06b0z8Wu+1GAwvhbDOD0AAAAAAAAAAECsIj5sJcO7tCzCu2fSrjl4niS9G86ROgAAgD8AAIA/minrPCk8O7qVShQ8PdKnNoNNc7uBnqI1AACAPwAAgD/jyM6+jilKP94vsz1GTzi+JC30vS16Mb0AAAAAAAAAAM0R4zwpYHS6ZajpOoHdArbaiK05kgcGugAAgD8AAIA/zbQCPEkdsj9jU4M+B7ygvrNud7vaH5Q8AAAAAAAAAACa0QS8XE9cupohNboi45uzBT4lu4NjTzkAAIA/AACAPzNf4r0p8Ai6kLihO30PxjjAQk66EtqkuQAAgD8AAAAA+gJfPvFWFb35Lq47Yzlfumlegr4fAyi7AACAPwAAgD8zwXE9KbAJumt5fTkSFYA0osUiOurolLgAAIA/AACAP3No1b3D7R26URMHuqUXQLXDdAG7/PobOQAAgD8AAIA/bcA0PgUkg7v9Sgc71H0IuLE9obzxwR26AACAPwAAgD/N3mq9FDiZunxbuTrPhIg1WQXTuhOx1bkAAIA/AACAP2ZnhT4AuT4/u9sRPgfLm774lVA+pNZBvQAAAAAAAAAAczeKPQ3d+D4YESi96293vowbMb0RcSY9AAAAAAAAAADNxAa8LIWVPOE/DTt7aRC+59CAOQY6Jj0AAAAAAAAAAD5uh774mOw821yJPAxiDTh91YG+cPUPPQAAgD8AAAAAs/6dvcO5Hrpoamo5kSFfNP8R0bnowYu4AACAPwAAgD/6o5g+OywBP8i3S737IYC+PXjMPagW2bwAAAAAAAAAAE0SBr3D4QK6qGjmOFHP/TRXNUW6iHwFuAAAgD8AAIA/Zr3rvMMZUrr9cp44/lwIto3d17mMm7O3AACAPwAAgD/NTpU9pJnnPdpJsTu90fS9JDTMuZUvAL0AAAAAAAAAAADRWT0UaJy6OraguxSuLzQquxM6JXNuswAAgD8AAIA/M3RiPUh7hLp+rIU6qeFDNkrevTo5Apq5AACAPwAAgD9a4Ya9KbQdukB3kjvSIyM3s82COyV/FDYAAIA/AACAPyafP77bx8+8ox0CvQ2SobuAeTc+0yZ5PAAAgD8AAIA/wOxPvgoeEzzqfn08dx9Jug3Mpb22wjw7AACAPwAAgD8ARJQ8jz4IuiX5UrnLBly00vi3OTtDcTgAAIA/AACAP83AW7xFz5g/dhnKOnw+p76Z07U8gx2FPQAAAAAAAAAAwEmEPYUTobklFki8WZVitphgsLteBtM1AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQGt+/KXwZECUhpRSlIwBbJRN6AOMAXSUR0CNq49DhLoPdX2UKGgGaAloD0MIgJ4GDBI8YkCUhpRSlGgVTegDaBZHQI2vxkoWpId1fZQoaAZoCWgPQwgrUfaWcg1XQJSGlFKUaBVN6ANoFkdAjbOlI3BHkXV9lChoBmgJaA9DCNhHp678CmBAlIaUUpRoFU3oA2gWR0CNudePaL4vdX2UKGgGaAloD0MIlNqLaDt+J0CUhpRSlGgVTQIBaBZHQI28dDD0lJJ1fZQoaAZoCWgPQwi9NEWA01peQJSGlFKUaBVN6ANoFkdAjcJzJp35e3V9lChoBmgJaA9DCGTll8GY6WFAlIaUUpRoFU3oA2gWR0CNwqsxO+IudX2UKGgGaAloD0MIG0zD8JGwYECUhpRSlGgVTegDaBZHQI3LYkqtozx1fZQoaAZoCWgPQwgWLxaGSBhiQJSGlFKUaBVN6ANoFkdAjdpkv0yxiXV9lChoBmgJaA9DCNatnpPexGJAlIaUUpRoFU3oA2gWR0CN3GHt4RmLdX2UKGgGaAloD0MIHClbJO0HZECUhpRSlGgVTegDaBZHQI3d4Q+UyHp1fZQoaAZoCWgPQwiRD3o2Kx9iQJSGlFKUaBVN6ANoFkdAjfXlt0mtyXV9lChoBmgJaA9DCPd0dcdi/V9AlIaUUpRoFU3oA2gWR0COAtxWkrPMdX2UKGgGaAloD0MI9GxWfa43XUCUhpRSlGgVTegDaBZHQI4IibMHKOl1fZQoaAZoCWgPQwj3IATkSyQ/QJSGlFKUaBVNTwFoFkdAjgvf9gnc+XV9lChoBmgJaA9DCAzLn28Lx2JAlIaUUpRoFU3oA2gWR0COElzGPxQSdX2UKGgGaAloD0MIKzOl9bcYYECUhpRSlGgVTegDaBZHQI4TZPM0P6N1fZQoaAZoCWgPQwjwpIXLKtwnwJSGlFKUaBVL52gWR0COFtA1NxlydX2UKGgGaAloD0MIIVhVLz/gYUCUhpRSlGgVTegDaBZHQI4Y7Dl5nlJ1fZQoaAZoCWgPQwhI+x9grWxeQJSGlFKUaBVN6ANoFkdAjhnNbs4T9XV9lChoBmgJaA9DCHSV7q6zP2BAlIaUUpRoFU3oA2gWR0COHd9KEnLJdX2UKGgGaAloD0MIDECjdGksZUCUhpRSlGgVTegDaBZHQI42MYZVGTd1fZQoaAZoCWgPQwh7E0NyMkJbQJSGlFKUaBVN6ANoFkdAjj8szMzMzXV9lChoBmgJaA9DCGsLz0vFaERAlIaUUpRoFU0KAWgWR0COSFN0NjLCdX2UKGgGaAloD0MIBRkBFY4WX0CUhpRSlGgVTegDaBZHQI5K4B/7SAp1fZQoaAZoCWgPQwia7Qp9MIhjQJSGlFKUaBVN6ANoFkdAjlp/LLZBcHV9lChoBmgJaA9DCD/lmCzuamNAlIaUUpRoFU3oA2gWR0COX7VWjoIOdX2UKGgGaAloD0MITiuFQC6fYUCUhpRSlGgVTegDaBZHQI5kbK5kK/p1fZQoaAZoCWgPQwgzUu+pnJYeQJSGlFKUaBVNOgFoFkdAjmrHHNorWnV9lChoBmgJaA9DCLQfKSLDj2BAlIaUUpRoFU3oA2gWR0CObZgVoHs1dX2UKGgGaAloD0MIr3srEhNvYECUhpRSlGgVTegDaBZHQI5vrnDBMzx1fZQoaAZoCWgPQwg/br98sj1iQJSGlFKUaBVN6ANoFkdAjsnnyEtdzHV9lChoBmgJaA9DCLQglPfxIGFAlIaUUpRoFU3oA2gWR0COyvFl05lwdX2UKGgGaAloD0MIh6bs9IP8Y0CUhpRSlGgVTegDaBZHQI7QfPgNwzd1fZQoaAZoCWgPQwjY8zXLZaZlQJSGlFKUaBVN6ANoFkdAjttl05lvqHV9lChoBmgJaA9DCNP3GoLjll9AlIaUUpRoFU3oA2gWR0CO4nRmbsnidX2UKGgGaAloD0MIlPYGXxg8Y0CUhpRSlGgVTegDaBZHQI7np+QU5+91fZQoaAZoCWgPQwjv5xTk53pkQJSGlFKUaBVN6ANoFkdAjuv+QdS2pnV9lChoBmgJaA9DCI55HXHI4FhAlIaUUpRoFU3oA2gWR0CO8AKekHlfdX2UKGgGaAloD0MIjGmmex0iZUCUhpRSlGgVTegDaBZHQI72Q1gpjMF1fZQoaAZoCWgPQwhmpN5TuR9jQJSGlFKUaBVN6ANoFkdAjv9XJ5mh/XV9lChoBmgJaA9DCCMWMewwlGJAlIaUUpRoFU3oA2gWR0CO/5QbdadMdX2UKGgGaAloD0MIpvCg2XVtXECUhpRSlGgVTegDaBZHQI8IuvyLAHp1fZQoaAZoCWgPQwgCDqFKzXBdQJSGlFKUaBVN6ANoFkdAjxhxbr1M/XV9lChoBmgJaA9DCFH3AUhtT2VAlIaUUpRoFU3oA2gWR0CPGn1xsEaEdX2UKGgGaAloD0MIwLFnz2V+McCUhpRSlGgVS/1oFkdAjyi8NpdrwnV9lChoBmgJaA9DCL6h8Nk6lFpAlIaUUpRoFU3oA2gWR0CPNkzAvcrRdX2UKGgGaAloD0MIaAOwARHPYUCUhpRSlGgVTegDaBZHQI9D74Fiay91fZQoaAZoCWgPQwgVqMXg4UpkQJSGlFKUaBVN6ANoFkdAj01OZLIxQHV9lChoBmgJaA9DCMssQrEVMl5AlIaUUpRoFU3oA2gWR0CPVAmHgxagdX2UKGgGaAloD0MI9DehEIEgY0CUhpRSlGgVTegDaBZHQI9VCzgMtsh1fZQoaAZoCWgPQwhGCfoLPSdlQJSGlFKUaBVN6ANoFkdAj1icophF3XV9lChoBmgJaA9DCLnH0ocuN2JAlIaUUpRoFU3oA2gWR0CPWsfgaWHDdX2UKGgGaAloD0MIoaLqV7qXYUCUhpRSlGgVTegDaBZHQI9bsVtXPqt1fZQoaAZoCWgPQwiIDRZO0n5jQJSGlFKUaBVN6ANoFkdAj3gnYxtYS3V9lChoBmgJaA9DCAIOoUpNQmJAlIaUUpRoFU3oA2gWR0CPgLE9+w1SdX2UKGgGaAloD0MIiPIFLSTFXECUhpRSlGgVTegDaBZHQI+JkCDEm6Z1fZQoaAZoCWgPQwhznrEv2TljQJSGlFKUaBVN6ANoFkdAj4wFQ/HHWHV9lChoBmgJaA9DCD1H5LsU7WNAlIaUUpRoFU3oA2gWR0CPmpLamGdqdX2UKGgGaAloD0MIYkuPpnqOOUCUhpRSlGgVTRMBaBZHQI+b+J79hql1fZQoaAZoCWgPQwiobcMoCKJdQJSGlFKUaBVN6ANoFkdAj59BVENOM3V9lChoBmgJaA9DCALzkCkfQjNAlIaUUpRoFU0sAWgWR0CPoPz19ORDdX2UKGgGaAloD0MI3sfRHNkiZ0CUhpRSlGgVTegDaBZHQI+jdB4Uvf11fZQoaAZoCWgPQwgIIos08U1hQJSGlFKUaBVN6ANoFkdAj6kT5ftx/HV9lChoBmgJaA9DCIc2ABuQXWFAlIaUUpRoFU3oA2gWR0CPq5ZV4oqkdX2UKGgGaAloD0MIS3SWWYSHYECUhpRSlGgVTegDaBZHQI+tVZ1V5rx1fZQoaAZoCWgPQwiyDdyBOsRfQJSGlFKUaBVN6ANoFkdAkAKHDvVmSXV9lChoBmgJaA9DCHeC/de5sl9AlIaUUpRoFU3oA2gWR0CQAvck+otMdX2UKGgGaAloD0MI0AoMWV1HYUCUhpRSlGgVTegDaBZHQJAFdbqyGBZ1fZQoaAZoCWgPQwjww0FClHdBQJSGlFKUaBVNFgFoFkdAkAkk7bL2YnV9lChoBmgJaA9DCKsGYW73J15AlIaUUpRoFU3oA2gWR0CQCj5+6RQrdX2UKGgGaAloD0MICHQmbaqOCkCUhpRSlGgVS8hoFkdAkAyM32mHg3V9lChoBmgJaA9DCPoNEw1Sql5AlIaUUpRoFU3oA2gWR0CQDTzSThYOdX2UKGgGaAloD0MIhjyCGyniV0CUhpRSlGgVTegDaBZHQJAPl7NSqER1fZQoaAZoCWgPQwhaLhud8+81wJSGlFKUaBVL+2gWR0CQEN3AVO9GdX2UKGgGaAloD0MIjo8WZ4ziY0CUhpRSlGgVTegDaBZHQJATX9R77bd1fZQoaAZoCWgPQwg6lnfVA2RhQJSGlFKUaBVN6ANoFkdAkBY5LuhK2HV9lChoBmgJaA9DCAh0Jm2qgGNAlIaUUpRoFU3oA2gWR0CQGl9E1EVndX2UKGgGaAloD0MIXi9NEWAPYkCUhpRSlGgVTegDaBZHQJAaepzcRDl1fZQoaAZoCWgPQwjd71AU6PdkQJSGlFKUaBVN6ANoFkdAkB7K4QSSNnV9lChoBmgJaA9DCI0IxsGl7UNAlIaUUpRoFU0UAWgWR0CQICUC7sfJdX2UKGgGaAloD0MI81meB/eRZECUhpRSlGgVTegDaBZHQJAlzHXEqDt1fZQoaAZoCWgPQwjVIqKYvC1kQJSGlFKUaBVN6ANoFkdAkCbPJ7sv7HV9lChoBmgJaA9DCG2RtBv9P2ZAlIaUUpRoFU3oA2gWR0CQLVE9Mbm2dX2UKGgGaAloD0MIiZtTyQCNXkCUhpRSlGgVTegDaBZHQJAzljVhCt11fZQoaAZoCWgPQwh+VwT/2+pkQJSGlFKUaBVN6ANoFkdAkDoTposZpHV9lChoBmgJaA9DCPUUOUTcKWRAlIaUUpRoFU3oA2gWR0CQPrVc2R7rdX2UKGgGaAloD0MIg2itaHMQYECUhpRSlGgVTegDaBZHQJBCEgJTl1d1fZQoaAZoCWgPQwihvmVOF2FlQJSGlFKUaBVN6ANoFkdAkEKkU47zTXV9lChoBmgJaA9DCKm8HeE0Y2NAlIaUUpRoFU3oA2gWR0CQRHsQ/X5GdX2UKGgGaAloD0MIN1SM8zdJYkCUhpRSlGgVTegDaBZHQJBXISXdCVt1fZQoaAZoCWgPQwjYfcfw2ANlQJSGlFKUaBVN6ANoFkdAkFwe5e7cwnV9lChoBmgJaA9DCGub4nFRnltAlIaUUpRoFU3oA2gWR0CQYpp+MIeHdX2UKGgGaAloD0MIER5tHLE9W0CUhpRSlGgVTegDaBZHQJBrKPhhpg11fZQoaAZoCWgPQwgcQwBwbFpiQJSGlFKUaBVN6ANoFkdAkGv83dbgTHV9lChoBmgJaA9DCAn/ImjMllZAlIaUUpRoFU3oA2gWR0CQbby3Td+HdX2UKGgGaAloD0MIcqQzMPLnZkCUhpRSlGgVTegDaBZHQJBzNxKg7HR1fZQoaAZoCWgPQwjHEAAc+ydiQJSGlFKUaBVN6ANoFkdAkHScCLdepnV9lChoBmgJaA9DCKn4vyOqsmNAlIaUUpRoFU3oA2gWR0CQdZuIRAbAdX2UKGgGaAloD0MI2epySsCdYUCUhpRSlGgVTegDaBZHQJB9z+cYqG11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a70cc1d1024e016b669441e433525453989191ba7d7da9c1f316c9d30295308a
|
3 |
+
size 147914
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3f49378040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3f493780d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3f49378160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3f493781f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3f49378280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3f49378310>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3f493783a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3f49378430>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3f493784c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3f49378550>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3f493785e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3f493742d0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 32,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1673360162764422995,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAA3sgr2P1my6Ob/Lu4RfKzbD3QK4feKYtQAAgD8AAIA/ZkYyOqRAVblSY+e71RKPNkSu0LvLggW2AACAPwAAgD96qrm+3+5pP/U06b0z8Wu+1GAwvhbDOD0AAAAAAAAAAECsIj5sJcO7tCzCu2fSrjl4niS9G86ROgAAgD8AAIA/minrPCk8O7qVShQ8PdKnNoNNc7uBnqI1AACAPwAAgD/jyM6+jilKP94vsz1GTzi+JC30vS16Mb0AAAAAAAAAAM0R4zwpYHS6ZajpOoHdArbaiK05kgcGugAAgD8AAIA/zbQCPEkdsj9jU4M+B7ygvrNud7vaH5Q8AAAAAAAAAACa0QS8XE9cupohNboi45uzBT4lu4NjTzkAAIA/AACAPzNf4r0p8Ai6kLihO30PxjjAQk66EtqkuQAAgD8AAAAA+gJfPvFWFb35Lq47Yzlfumlegr4fAyi7AACAPwAAgD8zwXE9KbAJumt5fTkSFYA0osUiOurolLgAAIA/AACAP3No1b3D7R26URMHuqUXQLXDdAG7/PobOQAAgD8AAIA/bcA0PgUkg7v9Sgc71H0IuLE9obzxwR26AACAPwAAgD/N3mq9FDiZunxbuTrPhIg1WQXTuhOx1bkAAIA/AACAP2ZnhT4AuT4/u9sRPgfLm774lVA+pNZBvQAAAAAAAAAAczeKPQ3d+D4YESi96293vowbMb0RcSY9AAAAAAAAAADNxAa8LIWVPOE/DTt7aRC+59CAOQY6Jj0AAAAAAAAAAD5uh774mOw821yJPAxiDTh91YG+cPUPPQAAgD8AAAAAs/6dvcO5Hrpoamo5kSFfNP8R0bnowYu4AACAPwAAgD/6o5g+OywBP8i3S737IYC+PXjMPagW2bwAAAAAAAAAAE0SBr3D4QK6qGjmOFHP/TRXNUW6iHwFuAAAgD8AAIA/Zr3rvMMZUrr9cp44/lwIto3d17mMm7O3AACAPwAAgD/NTpU9pJnnPdpJsTu90fS9JDTMuZUvAL0AAAAAAAAAAADRWT0UaJy6OraguxSuLzQquxM6JXNuswAAgD8AAIA/M3RiPUh7hLp+rIU6qeFDNkrevTo5Apq5AACAPwAAgD9a4Ya9KbQdukB3kjvSIyM3s82COyV/FDYAAIA/AACAPyafP77bx8+8ox0CvQ2SobuAeTc+0yZ5PAAAgD8AAIA/wOxPvgoeEzzqfn08dx9Jug3Mpb22wjw7AACAPwAAgD8ARJQ8jz4IuiX5UrnLBly00vi3OTtDcTgAAIA/AACAP83AW7xFz5g/dhnKOnw+p76Z07U8gx2FPQAAAAAAAAAAwEmEPYUTobklFki8WZVitphgsLteBtM1AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQGt+/KXwZECUhpRSlIwBbJRN6AOMAXSUR0CNq49DhLoPdX2UKGgGaAloD0MIgJ4GDBI8YkCUhpRSlGgVTegDaBZHQI2vxkoWpId1fZQoaAZoCWgPQwgrUfaWcg1XQJSGlFKUaBVN6ANoFkdAjbOlI3BHkXV9lChoBmgJaA9DCNhHp678CmBAlIaUUpRoFU3oA2gWR0CNudePaL4vdX2UKGgGaAloD0MIlNqLaDt+J0CUhpRSlGgVTQIBaBZHQI28dDD0lJJ1fZQoaAZoCWgPQwi9NEWA01peQJSGlFKUaBVN6ANoFkdAjcJzJp35e3V9lChoBmgJaA9DCGTll8GY6WFAlIaUUpRoFU3oA2gWR0CNwqsxO+IudX2UKGgGaAloD0MIG0zD8JGwYECUhpRSlGgVTegDaBZHQI3LYkqtozx1fZQoaAZoCWgPQwgWLxaGSBhiQJSGlFKUaBVN6ANoFkdAjdpkv0yxiXV9lChoBmgJaA9DCNatnpPexGJAlIaUUpRoFU3oA2gWR0CN3GHt4RmLdX2UKGgGaAloD0MIHClbJO0HZECUhpRSlGgVTegDaBZHQI3d4Q+UyHp1fZQoaAZoCWgPQwiRD3o2Kx9iQJSGlFKUaBVN6ANoFkdAjfXlt0mtyXV9lChoBmgJaA9DCPd0dcdi/V9AlIaUUpRoFU3oA2gWR0COAtxWkrPMdX2UKGgGaAloD0MI9GxWfa43XUCUhpRSlGgVTegDaBZHQI4IibMHKOl1fZQoaAZoCWgPQwj3IATkSyQ/QJSGlFKUaBVNTwFoFkdAjgvf9gnc+XV9lChoBmgJaA9DCAzLn28Lx2JAlIaUUpRoFU3oA2gWR0COElzGPxQSdX2UKGgGaAloD0MIKzOl9bcYYECUhpRSlGgVTegDaBZHQI4TZPM0P6N1fZQoaAZoCWgPQwjwpIXLKtwnwJSGlFKUaBVL52gWR0COFtA1NxlydX2UKGgGaAloD0MIIVhVLz/gYUCUhpRSlGgVTegDaBZHQI4Y7Dl5nlJ1fZQoaAZoCWgPQwhI+x9grWxeQJSGlFKUaBVN6ANoFkdAjhnNbs4T9XV9lChoBmgJaA9DCHSV7q6zP2BAlIaUUpRoFU3oA2gWR0COHd9KEnLJdX2UKGgGaAloD0MIDECjdGksZUCUhpRSlGgVTegDaBZHQI42MYZVGTd1fZQoaAZoCWgPQwh7E0NyMkJbQJSGlFKUaBVN6ANoFkdAjj8szMzMzXV9lChoBmgJaA9DCGsLz0vFaERAlIaUUpRoFU0KAWgWR0COSFN0NjLCdX2UKGgGaAloD0MIBRkBFY4WX0CUhpRSlGgVTegDaBZHQI5K4B/7SAp1fZQoaAZoCWgPQwia7Qp9MIhjQJSGlFKUaBVN6ANoFkdAjlp/LLZBcHV9lChoBmgJaA9DCD/lmCzuamNAlIaUUpRoFU3oA2gWR0COX7VWjoIOdX2UKGgGaAloD0MITiuFQC6fYUCUhpRSlGgVTegDaBZHQI5kbK5kK/p1fZQoaAZoCWgPQwgzUu+pnJYeQJSGlFKUaBVNOgFoFkdAjmrHHNorWnV9lChoBmgJaA9DCLQfKSLDj2BAlIaUUpRoFU3oA2gWR0CObZgVoHs1dX2UKGgGaAloD0MIr3srEhNvYECUhpRSlGgVTegDaBZHQI5vrnDBMzx1fZQoaAZoCWgPQwg/br98sj1iQJSGlFKUaBVN6ANoFkdAjsnnyEtdzHV9lChoBmgJaA9DCLQglPfxIGFAlIaUUpRoFU3oA2gWR0COyvFl05lwdX2UKGgGaAloD0MIh6bs9IP8Y0CUhpRSlGgVTegDaBZHQI7QfPgNwzd1fZQoaAZoCWgPQwjY8zXLZaZlQJSGlFKUaBVN6ANoFkdAjttl05lvqHV9lChoBmgJaA9DCNP3GoLjll9AlIaUUpRoFU3oA2gWR0CO4nRmbsnidX2UKGgGaAloD0MIlPYGXxg8Y0CUhpRSlGgVTegDaBZHQI7np+QU5+91fZQoaAZoCWgPQwjv5xTk53pkQJSGlFKUaBVN6ANoFkdAjuv+QdS2pnV9lChoBmgJaA9DCI55HXHI4FhAlIaUUpRoFU3oA2gWR0CO8AKekHlfdX2UKGgGaAloD0MIjGmmex0iZUCUhpRSlGgVTegDaBZHQI72Q1gpjMF1fZQoaAZoCWgPQwhmpN5TuR9jQJSGlFKUaBVN6ANoFkdAjv9XJ5mh/XV9lChoBmgJaA9DCCMWMewwlGJAlIaUUpRoFU3oA2gWR0CO/5QbdadMdX2UKGgGaAloD0MIpvCg2XVtXECUhpRSlGgVTegDaBZHQI8IuvyLAHp1fZQoaAZoCWgPQwgCDqFKzXBdQJSGlFKUaBVN6ANoFkdAjxhxbr1M/XV9lChoBmgJaA9DCFH3AUhtT2VAlIaUUpRoFU3oA2gWR0CPGn1xsEaEdX2UKGgGaAloD0MIwLFnz2V+McCUhpRSlGgVS/1oFkdAjyi8NpdrwnV9lChoBmgJaA9DCL6h8Nk6lFpAlIaUUpRoFU3oA2gWR0CPNkzAvcrRdX2UKGgGaAloD0MIaAOwARHPYUCUhpRSlGgVTegDaBZHQI9D74Fiay91fZQoaAZoCWgPQwgVqMXg4UpkQJSGlFKUaBVN6ANoFkdAj01OZLIxQHV9lChoBmgJaA9DCMssQrEVMl5AlIaUUpRoFU3oA2gWR0CPVAmHgxagdX2UKGgGaAloD0MI9DehEIEgY0CUhpRSlGgVTegDaBZHQI9VCzgMtsh1fZQoaAZoCWgPQwhGCfoLPSdlQJSGlFKUaBVN6ANoFkdAj1icophF3XV9lChoBmgJaA9DCLnH0ocuN2JAlIaUUpRoFU3oA2gWR0CPWsfgaWHDdX2UKGgGaAloD0MIoaLqV7qXYUCUhpRSlGgVTegDaBZHQI9bsVtXPqt1fZQoaAZoCWgPQwiIDRZO0n5jQJSGlFKUaBVN6ANoFkdAj3gnYxtYS3V9lChoBmgJaA9DCAIOoUpNQmJAlIaUUpRoFU3oA2gWR0CPgLE9+w1SdX2UKGgGaAloD0MIiPIFLSTFXECUhpRSlGgVTegDaBZHQI+JkCDEm6Z1fZQoaAZoCWgPQwhznrEv2TljQJSGlFKUaBVN6ANoFkdAj4wFQ/HHWHV9lChoBmgJaA9DCD1H5LsU7WNAlIaUUpRoFU3oA2gWR0CPmpLamGdqdX2UKGgGaAloD0MIYkuPpnqOOUCUhpRSlGgVTRMBaBZHQI+b+J79hql1fZQoaAZoCWgPQwiobcMoCKJdQJSGlFKUaBVN6ANoFkdAj59BVENOM3V9lChoBmgJaA9DCALzkCkfQjNAlIaUUpRoFU0sAWgWR0CPoPz19ORDdX2UKGgGaAloD0MI3sfRHNkiZ0CUhpRSlGgVTegDaBZHQI+jdB4Uvf11fZQoaAZoCWgPQwgIIos08U1hQJSGlFKUaBVN6ANoFkdAj6kT5ftx/HV9lChoBmgJaA9DCIc2ABuQXWFAlIaUUpRoFU3oA2gWR0CPq5ZV4oqkdX2UKGgGaAloD0MIS3SWWYSHYECUhpRSlGgVTegDaBZHQI+tVZ1V5rx1fZQoaAZoCWgPQwiyDdyBOsRfQJSGlFKUaBVN6ANoFkdAkAKHDvVmSXV9lChoBmgJaA9DCHeC/de5sl9AlIaUUpRoFU3oA2gWR0CQAvck+otMdX2UKGgGaAloD0MI0AoMWV1HYUCUhpRSlGgVTegDaBZHQJAFdbqyGBZ1fZQoaAZoCWgPQwjww0FClHdBQJSGlFKUaBVNFgFoFkdAkAkk7bL2YnV9lChoBmgJaA9DCKsGYW73J15AlIaUUpRoFU3oA2gWR0CQCj5+6RQrdX2UKGgGaAloD0MICHQmbaqOCkCUhpRSlGgVS8hoFkdAkAyM32mHg3V9lChoBmgJaA9DCPoNEw1Sql5AlIaUUpRoFU3oA2gWR0CQDTzSThYOdX2UKGgGaAloD0MIhjyCGyniV0CUhpRSlGgVTegDaBZHQJAPl7NSqER1fZQoaAZoCWgPQwhaLhud8+81wJSGlFKUaBVL+2gWR0CQEN3AVO9GdX2UKGgGaAloD0MIjo8WZ4ziY0CUhpRSlGgVTegDaBZHQJATX9R77bd1fZQoaAZoCWgPQwg6lnfVA2RhQJSGlFKUaBVN6ANoFkdAkBY5LuhK2HV9lChoBmgJaA9DCAh0Jm2qgGNAlIaUUpRoFU3oA2gWR0CQGl9E1EVndX2UKGgGaAloD0MIXi9NEWAPYkCUhpRSlGgVTegDaBZHQJAaepzcRDl1fZQoaAZoCWgPQwjd71AU6PdkQJSGlFKUaBVN6ANoFkdAkB7K4QSSNnV9lChoBmgJaA9DCI0IxsGl7UNAlIaUUpRoFU0UAWgWR0CQICUC7sfJdX2UKGgGaAloD0MI81meB/eRZECUhpRSlGgVTegDaBZHQJAlzHXEqDt1fZQoaAZoCWgPQwjVIqKYvC1kQJSGlFKUaBVN6ANoFkdAkCbPJ7sv7HV9lChoBmgJaA9DCG2RtBv9P2ZAlIaUUpRoFU3oA2gWR0CQLVE9Mbm2dX2UKGgGaAloD0MIiZtTyQCNXkCUhpRSlGgVTegDaBZHQJAzljVhCt11fZQoaAZoCWgPQwh+VwT/2+pkQJSGlFKUaBVN6ANoFkdAkDoTposZpHV9lChoBmgJaA9DCPUUOUTcKWRAlIaUUpRoFU3oA2gWR0CQPrVc2R7rdX2UKGgGaAloD0MIg2itaHMQYECUhpRSlGgVTegDaBZHQJBCEgJTl1d1fZQoaAZoCWgPQwihvmVOF2FlQJSGlFKUaBVN6ANoFkdAkEKkU47zTXV9lChoBmgJaA9DCKm8HeE0Y2NAlIaUUpRoFU3oA2gWR0CQRHsQ/X5GdX2UKGgGaAloD0MIN1SM8zdJYkCUhpRSlGgVTegDaBZHQJBXISXdCVt1fZQoaAZoCWgPQwjYfcfw2ANlQJSGlFKUaBVN6ANoFkdAkFwe5e7cwnV9lChoBmgJaA9DCGub4nFRnltAlIaUUpRoFU3oA2gWR0CQYpp+MIeHdX2UKGgGaAloD0MIER5tHLE9W0CUhpRSlGgVTegDaBZHQJBrKPhhpg11fZQoaAZoCWgPQwgcQwBwbFpiQJSGlFKUaBVN6ANoFkdAkGv83dbgTHV9lChoBmgJaA9DCAn/ImjMllZAlIaUUpRoFU3oA2gWR0CQbby3Td+HdX2UKGgGaAloD0MIcqQzMPLnZkCUhpRSlGgVTegDaBZHQJBzNxKg7HR1fZQoaAZoCWgPQwjHEAAc+ydiQJSGlFKUaBVN6ANoFkdAkHScCLdepnV9lChoBmgJaA9DCKn4vyOqsmNAlIaUUpRoFU3oA2gWR0CQdZuIRAbAdX2UKGgGaAloD0MI2epySsCdYUCUhpRSlGgVTegDaBZHQJB9z+cYqG11ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50d82d31b38d98300a5653d8c64b951c3d643e4633e5b787d43fab37e11782d5
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9112fef02109292443440920dd676a3c3546cb128c86fae24430def1c87b7235
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (258 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 245.3605290778317, "std_reward": 39.737587680061274, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T14:41:45.338747"}
|