ArneL2206 commited on
Commit
78826c3
·
1 Parent(s): fb56a0d

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1397.57 +/- 187.36
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d7fc12b0f879559905bcb866d62d11de5744e6f534abb652defa5b870d47494
3
+ size 129106
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd451630790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd451630820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4516308b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd451630940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd4516309d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd451630a60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd451630af0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd451630b80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd451630c10>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd451630ca0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd451630d30>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fd45162b840>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 28
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 8
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1674412782710076464,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": null,
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFovaG9tZS9hcm5lL2FuYWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFovaG9tZS9hcm5lL2FuYWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANAfOT//kSW+lNUNP1zs0D4dgc6+GhkkPyxYpz9AbgK/AVD3vbbuMsBk2rY/xFUgwC7/Rb8828a9gLzEv1AiLz+3Ku+/mKF4vkNRVD9zHGS+zIIivkJTv79P3Qc+KHhUPookjL87LQI/EiUeP2Xgkb9ZMwG/yIyTv7peQT4PXm8+KuylPuF8zz43fpS+45DqvSruvT7JzFE+Fshbv9VxpD2sJDC/ZMeoP7atDT8/PIU/8qAoPyKY/j+Rn1g/MdCmvTQ8GL/ccYK86EQ6PlN3KT+KJIy/Oy0CP9czz7/YoGA/a3ujv46feb/4VqE+hhGcPjhH2L6ovZc+kMaNvHeZGL4v9tc+gHa9vZn5Vb+tm6g+LneKv9+ZCD/LkUE/T/soPsBL5j0RnWk/ZMFUP2T+Jz3eHxG/z2yHvxlksr4zp6M9iiSMvzstAj/XM8+/2KBgP/4FXz9MaQZAdg9iwNC7cj/eyGC+OzS2v9oGIj4v84y/V4uovzHEAL+8H8M/9+hIwMe8ML/GTpc/OD5Evp7xTL7h5lg+DlfyPxBfVD+5YcE80uQZv47q8jw3khY/PIouQIokjL87LQI/1zPPv2Xgkb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAhPIE1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcTWXvQAAAAC/5uS/AAAAAKlwv70AAAAA7WLgPwAAAACMQb28AAAAAOh53z8AAAAAtZeovQAAAAAEGPu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwnGbNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgISwlbwAAAAAaTDyvwAAAAC79bE9AAAAAAhI+D8AAAAAo3kIPgAAAADNFP0/AAAAAOg9CD0AAAAACmH/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMsmYTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB6NJ08AAAAAGA3+b8AAAAAm62kPQAAAACfgvE/AAAAAEGsWz0AAAAAVNb/PwAAAADXJO+8AAAAAAlx7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/0As3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGM8FvgAAAAD28vy/AAAAAEm257wAAAAA+2L0PwAAAAAT+QA+AAAAAIuV/j8AAAAAPKgLvgAAAAAKSuu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJv4aN6w+t+MAWyUTegDjAF0lEdAknLy9ytFKHV9lChoBkdAm7KzjzZpSWgHTegDaAhHQJJ3bbypaRp1fZQoaAZHQJ0Vbhl18stoB03oA2gIR0CSeA30wrUcdX2UKGgGR0CaNortmcvvaAdN6ANoCEdAknmJcPe54HV9lChoBkdAm63v0qYqomgHTegDaAhHQJJ8zGACnxd1fZQoaAZHQJngvjZL7GhoB03oA2gIR0CSgUoA4n4PdX2UKGgGR0CdofChvitJaAdN6ANoCEdAkoHuJ+DvmnV9lChoBkdAnEWcLKFIu2gHTegDaAhHQJKDafFrEcd1fZQoaAZHQJzuc2FWXC1oB03oA2gIR0CShr/7iyY5dX2UKGgGR0Cd4y+R5kbxaAdN6ANoCEdAkotLbYbsGHV9lChoBkdAmdIYkE9t/GgHTegDaAhHQJKL8BEKE391fZQoaAZHQJgxCNaQmu1oB03oA2gIR0CSjWo60Y0mdX2UKGgGR0CdBk8+RoysaAdN6ANoCEdAkpC4PPLPlnV9lChoBkdAmuSy7kGRm2gHTegDaAhHQJKVSxGDtgN1fZQoaAZHQJeJe1E3KjloB03oA2gIR0CSlfEjxCpndX2UKGgGR0Ccc+LfDUExaAdN6ANoCEdAkpdy5uqFRHV9lChoBkdAnN1+On2qUGgHTegDaAhHQJKatotcv/R1fZQoaAZHQJ0BWxOclPdoB03oA2gIR0CSnz0Y0l7ddX2UKGgGR0CaYx82Jiy6aAdN6ANoCEdAkp/fMSsbN3V9lChoBkdAnYhLSiM5wWgHTegDaAhHQJKhZNJvo/11fZQoaAZHQJ0+m0F8ohJoB03oA2gIR0CSpKEdvKlpdX2UKGgGR0CaluKAJ9iMaAdN6ANoCEdAkqkSLdepoHV9lChoBkdAm2IRDkU9IWgHTegDaAhHQJKpun5zo2Z1fZQoaAZHQJ0+BGQSzxBoB03oA2gIR0CSqzfIS13MdX2UKGgGR0Cd9Vo/RmbtaAdN6ANoCEdAkq6HUpd8iXV9lChoBkdAmdI8ghbGFWgHTegDaAhHQJKzEWJrLyN1fZQoaAZHQJqoz+FUQ05oB03oA2gIR0CSs7Rjz7MxdX2UKGgGR0CZty7F85S4aAdN6ANoCEdAkrU1/c32mHV9lChoBkdAnpJ71dxAB2gHTegDaAhHQJK4e2qkuYh1fZQoaAZHQJZ/BTvRZ2ZoB03oA2gIR0CSvP+717IDdX2UKGgGR0CZAZmaH9FXaAdN6ANoCEdAkr2kYfnwHHV9lChoBkdAmpLvlU6xPmgHTegDaAhHQJK/IVafSQZ1fZQoaAZHQJbJ8hkiD/VoB03oA2gIR0CSwnnM+u/2dX2UKGgGR0CbQTa4+bExaAdN6ANoCEdAksbzMvAXVXV9lChoBkdAmoHJnxri2mgHTegDaAhHQJLHl7gKnel1fZQoaAZHQJybrb/Ot4loB03oA2gIR0CSyRKdQO4HdX2UKGgGR0Cd2xrd30PIaAdN6ANoCEdAksxecMEzPHV9lChoBkdAnU9gfyPMjmgHTegDaAhHQJLQ1CmdiDx1fZQoaAZHQJ5MItUXHipoB03oA2gIR0CS0Xe9i+cpdX2UKGgGR0CfjPFpfx+baAdN6ANoCEdAktL0y57PZHV9lChoBkdAn1Rk47zTW2gHTegDaAhHQJLWTIV/MGJ1fZQoaAZHQJhMVxjriVBoB03oA2gIR0CS2so4uK4ydX2UKGgGR0CcoBW+oLofaAdN6ANoCEdAkttrmhdt23V9lChoBkdAmOxOEAYHgWgHTegDaAhHQJLc5O6/Zdx1fZQoaAZHQJu9TXBguyxoB03oA2gIR0CS4CVtXPqtdX2UKGgGR0CanNY5DJEIaAdN6ANoCEdAkuS7iADq4nV9lChoBkdAncTho24usmgHTegDaAhHQJLlYGGEf1Z1fZQoaAZHQJrY93xFy7xoB03oA2gIR0CS5t7UG3WndX2UKGgGR0CXtzYuCf6HaAdN6ANoCEdAkuobjT8YRHV9lChoBkdAm5683EQ5FWgHTegDaAhHQJLufViF0xN1fZQoaAZHQJ1X2eK8+RpoB03oA2gIR0CS7yIeYD1XdX2UKGgGR0CdrAIP9UCJaAdN6ANoCEdAkvCYf4h2XHV9lChoBkdAnjKu1jRUm2gHTegDaAhHQJLz1d2PkrB1fZQoaAZHQJkD5SXMQmNoB03oA2gIR0CS+E8mrsBydX2UKGgGR0CdRQ4CIUJwaAdN6ANoCEdAkvj1FlTWG3V9lChoBkdAmFMCPQv6CWgHTegDaAhHQJL6dOCXhOx1fZQoaAZHQJsdQjB2wFFoB03oA2gIR0CS/buw5eZ5dX2UKGgGR0CcCXdZq20BaAdN6ANoCEdAkwI7fHggo3V9lChoBkdAmq0w9q1w52gHTegDaAhHQJMC6hWYF7l1fZQoaAZHQJx92c3EQ5FoB03oA2gIR0CTBGWLxZuAdX2UKGgGR0CecDA1ejVQaAdN6ANoCEdAkwefFirksHV9lChoBkdAnpOxB/qgRWgHTegDaAhHQJMMDH+6y0N1fZQoaAZHQJqCR7LMcIZoB03oA2gIR0CTDK4rSVnmdX2UKGgGR0CeOszUI9kjaAdN6ANoCEdAkw4eB19v0nV9lChoBkdAm5bxqGlANWgHTegDaAhHQJMRRanrIHV1fZQoaAZHQJqblCTlkpZoB03oA2gIR0CTFbpt78ekdX2UKGgGR0CcEBz6ab4KaAdN6ANoCEdAkxZbHIZIhHV9lChoBkdAnCTgevIOpmgHTegDaAhHQJMX0biqABl1fZQoaAZHQJyWgExIre9oB03oA2gIR0CTGxYb83uNdX2UKGgGR0CdsT4/NZ/1aAdN6ANoCEdAkx97ojfNzXV9lChoBkdAnPaQX668QWgHTegDaAhHQJMgHUc4o7V1fZQoaAZHQJ0BJ7LMcIZoB03oA2gIR0CTIZwvxpcpdX2UKGgGR0CcguaMaS9vaAdN6ANoCEdAkyTikfs/p3V9lChoBkdAmgd3GGVRk2gHTegDaAhHQJMpZhsqJ/J1fZQoaAZHQJvzEUBXCCVoB03oA2gIR0CTKgjkMkQgdX2UKGgGR0Cbu7puuRs/aAdN6ANoCEdAkyuAXuVopXV9lChoBkdAnPe87p3X7WgHTegDaAhHQJMuw42jwhJ1fZQoaAZHQJrUorI5o5BoB03oA2gIR0CTM0T7l7tzdX2UKGgGR0CbCTxCpm29aAdN6ANoCEdAkzPo3WFvh3V9lChoBkdAmSKamO2iL2gHTegDaAhHQJM1X2g39751fZQoaAZHQJoD9/EwWWRoB03oA2gIR0CTOK/NZ/0/dX2UKGgGR0Cb61VB2OhkaAdN6ANoCEdAkz0mbwz+FXV9lChoBkdAmmFhREWqLmgHTegDaAhHQJM9xzbN8md1fZQoaAZHQJpqEWk8A7xoB03oA2gIR0CTPzsAeaKDdX2UKGgGR0Cas/EoOQQuaAdN6ANoCEdAk0J8houf3HV9lChoBkdAmBsodlum8GgHTegDaAhHQJNG60ojOcF1fZQoaAZHQJxdcLsruploB03oA2gIR0CTR4ufmLccdX2UKGgGR0CYEbEq2BrfaAdN6ANoCEdAk0kM7p3X7XV9lChoBkdAnSzOLWI42mgHTegDaAhHQJNMSVObiId1fZQoaAZHQJkhbbxmTTxoB03oA2gIR0CTULpblijMdX2UKGgGR0Cb47ezUqhEaAdN6ANoCEdAk1FnHFPznXV9lChoBkdAnDnmZqmCRWgHTegDaAhHQJNS5y1eBxx1fZQoaAZHQJqBS3mV7hNoB03oA2gIR0CTViTFERapdX2UKGgGR0CaEorqt5lfaAdN6ANoCEdAk1qayGBWgnV9lChoBkdAmkySJXQtz2gHTegDaAhHQJNbPMfRu0l1fZQoaAZHQJmqWU/wAlxoB03oA2gIR0CTXMm5UcXFdX2UKGgGR0CZEIn3L3bmaAdN6ANoCEdAk2AKjWTX8XV9lChoBkdAmy1vDtPYWmgHTegDaAhHQJNkfnuAqd91fZQoaAZHQJrNXkkrwvxoB03oA2gIR0CTZSESdvsJdX2UKGgGR0CZZDyYXwb3aAdN6ANoCEdAk2aTBl+VknVlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 62500,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f354ec11a9dac7e9704692a422f127b64a2cd35efdad4ff63aabb12f135ca9e6
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:940591fabb04464a729258c415bdcc3c03f75b88d8b337fb4baf8b87a3da0421
3
+ size 56766
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.15.0-58-generic-x86_64-with-glibc2.10 #64-Ubuntu SMP Thu Jan 5 11:43:13 UTC 2023
2
+ Python: 3.8.5
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.1
5
+ GPU Enabled: True
6
+ Numpy: 1.23.4
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd451630790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd451630820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4516308b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd451630940>", "_build": "<function ActorCriticPolicy._build at 0x7fd4516309d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd451630a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd451630af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd451630b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd451630c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd451630ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd451630d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd45162b840>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674412782710076464, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFovaG9tZS9hcm5lL2FuYWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFovaG9tZS9hcm5lL2FuYWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANAfOT//kSW+lNUNP1zs0D4dgc6+GhkkPyxYpz9AbgK/AVD3vbbuMsBk2rY/xFUgwC7/Rb8828a9gLzEv1AiLz+3Ku+/mKF4vkNRVD9zHGS+zIIivkJTv79P3Qc+KHhUPookjL87LQI/EiUeP2Xgkb9ZMwG/yIyTv7peQT4PXm8+KuylPuF8zz43fpS+45DqvSruvT7JzFE+Fshbv9VxpD2sJDC/ZMeoP7atDT8/PIU/8qAoPyKY/j+Rn1g/MdCmvTQ8GL/ccYK86EQ6PlN3KT+KJIy/Oy0CP9czz7/YoGA/a3ujv46feb/4VqE+hhGcPjhH2L6ovZc+kMaNvHeZGL4v9tc+gHa9vZn5Vb+tm6g+LneKv9+ZCD/LkUE/T/soPsBL5j0RnWk/ZMFUP2T+Jz3eHxG/z2yHvxlksr4zp6M9iiSMvzstAj/XM8+/2KBgP/4FXz9MaQZAdg9iwNC7cj/eyGC+OzS2v9oGIj4v84y/V4uovzHEAL+8H8M/9+hIwMe8ML/GTpc/OD5Evp7xTL7h5lg+DlfyPxBfVD+5YcE80uQZv47q8jw3khY/PIouQIokjL87LQI/1zPPv2Xgkb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAhPIE1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcTWXvQAAAAC/5uS/AAAAAKlwv70AAAAA7WLgPwAAAACMQb28AAAAAOh53z8AAAAAtZeovQAAAAAEGPu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwnGbNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgISwlbwAAAAAaTDyvwAAAAC79bE9AAAAAAhI+D8AAAAAo3kIPgAAAADNFP0/AAAAAOg9CD0AAAAACmH/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMsmYTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB6NJ08AAAAAGA3+b8AAAAAm62kPQAAAACfgvE/AAAAAEGsWz0AAAAAVNb/PwAAAADXJO+8AAAAAAlx7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/0As3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGM8FvgAAAAD28vy/AAAAAEm257wAAAAA+2L0PwAAAAAT+QA+AAAAAIuV/j8AAAAAPKgLvgAAAAAKSuu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJv4aN6w+t+MAWyUTegDjAF0lEdAknLy9ytFKHV9lChoBkdAm7KzjzZpSWgHTegDaAhHQJJ3bbypaRp1fZQoaAZHQJ0Vbhl18stoB03oA2gIR0CSeA30wrUcdX2UKGgGR0CaNortmcvvaAdN6ANoCEdAknmJcPe54HV9lChoBkdAm63v0qYqomgHTegDaAhHQJJ8zGACnxd1fZQoaAZHQJngvjZL7GhoB03oA2gIR0CSgUoA4n4PdX2UKGgGR0CdofChvitJaAdN6ANoCEdAkoHuJ+DvmnV9lChoBkdAnEWcLKFIu2gHTegDaAhHQJKDafFrEcd1fZQoaAZHQJzuc2FWXC1oB03oA2gIR0CShr/7iyY5dX2UKGgGR0Cd4y+R5kbxaAdN6ANoCEdAkotLbYbsGHV9lChoBkdAmdIYkE9t/GgHTegDaAhHQJKL8BEKE391fZQoaAZHQJgxCNaQmu1oB03oA2gIR0CSjWo60Y0mdX2UKGgGR0CdBk8+RoysaAdN6ANoCEdAkpC4PPLPlnV9lChoBkdAmuSy7kGRm2gHTegDaAhHQJKVSxGDtgN1fZQoaAZHQJeJe1E3KjloB03oA2gIR0CSlfEjxCpndX2UKGgGR0Ccc+LfDUExaAdN6ANoCEdAkpdy5uqFRHV9lChoBkdAnN1+On2qUGgHTegDaAhHQJKatotcv/R1fZQoaAZHQJ0BWxOclPdoB03oA2gIR0CSnz0Y0l7ddX2UKGgGR0CaYx82Jiy6aAdN6ANoCEdAkp/fMSsbN3V9lChoBkdAnYhLSiM5wWgHTegDaAhHQJKhZNJvo/11fZQoaAZHQJ0+m0F8ohJoB03oA2gIR0CSpKEdvKlpdX2UKGgGR0CaluKAJ9iMaAdN6ANoCEdAkqkSLdepoHV9lChoBkdAm2IRDkU9IWgHTegDaAhHQJKpun5zo2Z1fZQoaAZHQJ0+BGQSzxBoB03oA2gIR0CSqzfIS13MdX2UKGgGR0Cd9Vo/RmbtaAdN6ANoCEdAkq6HUpd8iXV9lChoBkdAmdI8ghbGFWgHTegDaAhHQJKzEWJrLyN1fZQoaAZHQJqoz+FUQ05oB03oA2gIR0CSs7Rjz7MxdX2UKGgGR0CZty7F85S4aAdN6ANoCEdAkrU1/c32mHV9lChoBkdAnpJ71dxAB2gHTegDaAhHQJK4e2qkuYh1fZQoaAZHQJZ/BTvRZ2ZoB03oA2gIR0CSvP+717IDdX2UKGgGR0CZAZmaH9FXaAdN6ANoCEdAkr2kYfnwHHV9lChoBkdAmpLvlU6xPmgHTegDaAhHQJK/IVafSQZ1fZQoaAZHQJbJ8hkiD/VoB03oA2gIR0CSwnnM+u/2dX2UKGgGR0CbQTa4+bExaAdN6ANoCEdAksbzMvAXVXV9lChoBkdAmoHJnxri2mgHTegDaAhHQJLHl7gKnel1fZQoaAZHQJybrb/Ot4loB03oA2gIR0CSyRKdQO4HdX2UKGgGR0Cd2xrd30PIaAdN6ANoCEdAksxecMEzPHV9lChoBkdAnU9gfyPMjmgHTegDaAhHQJLQ1CmdiDx1fZQoaAZHQJ5MItUXHipoB03oA2gIR0CS0Xe9i+cpdX2UKGgGR0CfjPFpfx+baAdN6ANoCEdAktL0y57PZHV9lChoBkdAn1Rk47zTW2gHTegDaAhHQJLWTIV/MGJ1fZQoaAZHQJhMVxjriVBoB03oA2gIR0CS2so4uK4ydX2UKGgGR0CcoBW+oLofaAdN6ANoCEdAkttrmhdt23V9lChoBkdAmOxOEAYHgWgHTegDaAhHQJLc5O6/Zdx1fZQoaAZHQJu9TXBguyxoB03oA2gIR0CS4CVtXPqtdX2UKGgGR0CanNY5DJEIaAdN6ANoCEdAkuS7iADq4nV9lChoBkdAncTho24usmgHTegDaAhHQJLlYGGEf1Z1fZQoaAZHQJrY93xFy7xoB03oA2gIR0CS5t7UG3WndX2UKGgGR0CXtzYuCf6HaAdN6ANoCEdAkuobjT8YRHV9lChoBkdAm5683EQ5FWgHTegDaAhHQJLufViF0xN1fZQoaAZHQJ1X2eK8+RpoB03oA2gIR0CS7yIeYD1XdX2UKGgGR0CdrAIP9UCJaAdN6ANoCEdAkvCYf4h2XHV9lChoBkdAnjKu1jRUm2gHTegDaAhHQJLz1d2PkrB1fZQoaAZHQJkD5SXMQmNoB03oA2gIR0CS+E8mrsBydX2UKGgGR0CdRQ4CIUJwaAdN6ANoCEdAkvj1FlTWG3V9lChoBkdAmFMCPQv6CWgHTegDaAhHQJL6dOCXhOx1fZQoaAZHQJsdQjB2wFFoB03oA2gIR0CS/buw5eZ5dX2UKGgGR0CcCXdZq20BaAdN6ANoCEdAkwI7fHggo3V9lChoBkdAmq0w9q1w52gHTegDaAhHQJMC6hWYF7l1fZQoaAZHQJx92c3EQ5FoB03oA2gIR0CTBGWLxZuAdX2UKGgGR0CecDA1ejVQaAdN6ANoCEdAkwefFirksHV9lChoBkdAnpOxB/qgRWgHTegDaAhHQJMMDH+6y0N1fZQoaAZHQJqCR7LMcIZoB03oA2gIR0CTDK4rSVnmdX2UKGgGR0CeOszUI9kjaAdN6ANoCEdAkw4eB19v0nV9lChoBkdAm5bxqGlANWgHTegDaAhHQJMRRanrIHV1fZQoaAZHQJqblCTlkpZoB03oA2gIR0CTFbpt78ekdX2UKGgGR0CcEBz6ab4KaAdN6ANoCEdAkxZbHIZIhHV9lChoBkdAnCTgevIOpmgHTegDaAhHQJMX0biqABl1fZQoaAZHQJyWgExIre9oB03oA2gIR0CTGxYb83uNdX2UKGgGR0CdsT4/NZ/1aAdN6ANoCEdAkx97ojfNzXV9lChoBkdAnPaQX668QWgHTegDaAhHQJMgHUc4o7V1fZQoaAZHQJ0BJ7LMcIZoB03oA2gIR0CTIZwvxpcpdX2UKGgGR0CcguaMaS9vaAdN6ANoCEdAkyTikfs/p3V9lChoBkdAmgd3GGVRk2gHTegDaAhHQJMpZhsqJ/J1fZQoaAZHQJvzEUBXCCVoB03oA2gIR0CTKgjkMkQgdX2UKGgGR0Cbu7puuRs/aAdN6ANoCEdAkyuAXuVopXV9lChoBkdAnPe87p3X7WgHTegDaAhHQJMuw42jwhJ1fZQoaAZHQJrUorI5o5BoB03oA2gIR0CTM0T7l7tzdX2UKGgGR0CbCTxCpm29aAdN6ANoCEdAkzPo3WFvh3V9lChoBkdAmSKamO2iL2gHTegDaAhHQJM1X2g39751fZQoaAZHQJoD9/EwWWRoB03oA2gIR0CTOK/NZ/0/dX2UKGgGR0Cb61VB2OhkaAdN6ANoCEdAkz0mbwz+FXV9lChoBkdAmmFhREWqLmgHTegDaAhHQJM9xzbN8md1fZQoaAZHQJpqEWk8A7xoB03oA2gIR0CTPzsAeaKDdX2UKGgGR0Cas/EoOQQuaAdN6ANoCEdAk0J8houf3HV9lChoBkdAmBsodlum8GgHTegDaAhHQJNG60ojOcF1fZQoaAZHQJxdcLsruploB03oA2gIR0CTR4ufmLccdX2UKGgGR0CYEbEq2BrfaAdN6ANoCEdAk0kM7p3X7XV9lChoBkdAnSzOLWI42mgHTegDaAhHQJNMSVObiId1fZQoaAZHQJkhbbxmTTxoB03oA2gIR0CTULpblijMdX2UKGgGR0Cb47ezUqhEaAdN6ANoCEdAk1FnHFPznXV9lChoBkdAnDnmZqmCRWgHTegDaAhHQJNS5y1eBxx1fZQoaAZHQJqBS3mV7hNoB03oA2gIR0CTViTFERapdX2UKGgGR0CaEorqt5lfaAdN6ANoCEdAk1qayGBWgnV9lChoBkdAmkySJXQtz2gHTegDaAhHQJNbPMfRu0l1fZQoaAZHQJmqWU/wAlxoB03oA2gIR0CTXMm5UcXFdX2UKGgGR0CZEIn3L3bmaAdN6ANoCEdAk2AKjWTX8XV9lChoBkdAmy1vDtPYWmgHTegDaAhHQJNkfnuAqd91fZQoaAZHQJrNXkkrwvxoB03oA2gIR0CTZSESdvsJdX2UKGgGR0CZZDyYXwb3aAdN6ANoCEdAk2aTBl+VknVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-58-generic-x86_64-with-glibc2.10 #64-Ubuntu SMP Thu Jan 5 11:43:13 UTC 2023", "Python": "3.8.5", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (993 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1397.569157772418, "std_reward": 187.3611987032259, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T20:02:20.870550"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42f956b942e0b862968ebbe416cd718b042c6160eaa5b73d099b8077d099eb7a
3
+ size 2136