File size: 8,067 Bytes
9f02319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: apache-2.0
base_model: ArrayDice/Super_Detection_Model2
tags:
- generated_from_trainer
model-index:
- name: Super_Detection_Model3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Super_Detection_Model3

This model is a fine-tuned version of [ArrayDice/Super_Detection_Model2](https://huggingface.co/ArrayDice/Super_Detection_Model2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1571
- Map: 0.1696
- Map 50: 0.3271
- Map 75: 0.1562
- Map Small: 0.1107
- Map Medium: 0.2616
- Map Large: 0.2231
- Mar 1: 0.1116
- Mar 10: 0.2157
- Mar 100: 0.2529
- Mar Small: 0.1876
- Mar Medium: 0.3221
- Mar Large: 0.4017
- Map Car: 0.2983
- Mar 100 Car: 0.4065
- Map Hgv: 0.3148
- Mar 100 Hgv: 0.491
- Map Motorcycle: 0.0651
- Mar 100 Motorcycle: 0.1143
- Map Other: 0.0
- Mar 100 Other: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Car | Mar 100 Car | Map Hgv | Mar 100 Hgv | Map Motorcycle | Mar 100 Motorcycle | Map Other | Mar 100 Other |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:-------:|:-----------:|:-------:|:-----------:|:--------------:|:------------------:|:---------:|:-------------:|
| 1.4133        | 1.0   | 1431  | 1.3878          | 0.1118 | 0.2461 | 0.0892 | 0.0643    | 0.2086     | 0.153     | 0.0842 | 0.1683 | 0.2003  | 0.1397    | 0.2803     | 0.3359    | 0.1979  | 0.3241      | 0.2175  | 0.3971      | 0.0318         | 0.08               | 0.0       | 0.0           |
| 1.4871        | 2.0   | 2862  | 1.4927          | 0.0816 | 0.1914 | 0.0587 | 0.0525    | 0.1696     | 0.108     | 0.0687 | 0.1399 | 0.1659  | 0.1193    | 0.2457     | 0.2894    | 0.1602  | 0.3123      | 0.1616  | 0.3004      | 0.0046         | 0.0509             | 0.0       | 0.0           |
| 1.474         | 3.0   | 4293  | 1.3646          | 0.1173 | 0.2545 | 0.0943 | 0.0635    | 0.2175     | 0.1614    | 0.0844 | 0.1708 | 0.202   | 0.1383    | 0.2838     | 0.3361    | 0.2145  | 0.3427      | 0.2288  | 0.3962      | 0.026          | 0.0691             | 0.0       | 0.0           |
| 1.4236        | 4.0   | 5724  | 1.3576          | 0.1186 | 0.2538 | 0.0955 | 0.0724    | 0.2144     | 0.1237    | 0.0873 | 0.1692 | 0.1988  | 0.1367    | 0.2806     | 0.3138    | 0.2108  | 0.335       | 0.2272  | 0.378       | 0.0366         | 0.0823             | 0.0       | 0.0           |
| 1.4074        | 5.0   | 7155  | 1.3601          | 0.1238 | 0.2678 | 0.0964 | 0.0746    | 0.2107     | 0.161     | 0.0927 | 0.181  | 0.2143  | 0.1519    | 0.276      | 0.3352    | 0.2202  | 0.3451      | 0.2255  | 0.3875      | 0.0497         | 0.1246             | 0.0       | 0.0           |
| 1.3695        | 6.0   | 8586  | 1.3266          | 0.1191 | 0.2578 | 0.0966 | 0.0724    | 0.2171     | 0.1591    | 0.0863 | 0.1755 | 0.2095  | 0.1502    | 0.2824     | 0.323     | 0.2095  | 0.353       | 0.2327  | 0.3952      | 0.0341         | 0.0897             | 0.0       | 0.0           |
| 1.4115        | 7.0   | 10017 | 1.3915          | 0.1139 | 0.2468 | 0.0956 | 0.0672    | 0.2111     | 0.1399    | 0.0868 | 0.1751 | 0.2091  | 0.1466    | 0.2817     | 0.3676    | 0.2017  | 0.345       | 0.2244  | 0.3989      | 0.0295         | 0.0926             | 0.0       | 0.0           |
| 1.3927        | 8.0   | 11448 | 1.3455          | 0.1255 | 0.2657 | 0.1047 | 0.0754    | 0.2207     | 0.1601    | 0.0903 | 0.1795 | 0.2143  | 0.1506    | 0.291      | 0.3208    | 0.2407  | 0.3574      | 0.2311  | 0.4193      | 0.0302         | 0.0806             | 0.0       | 0.0           |
| 1.3754        | 9.0   | 12879 | 1.3246          | 0.1264 | 0.2683 | 0.1046 | 0.077     | 0.2192     | 0.1416    | 0.0896 | 0.1806 | 0.2119  | 0.1459    | 0.2895     | 0.3651    | 0.235   | 0.3474      | 0.2389  | 0.4166      | 0.0316         | 0.0834             | 0.0       | 0.0           |
| 1.3245        | 10.0  | 14310 | 1.2692          | 0.1326 | 0.2825 | 0.1094 | 0.0767    | 0.2328     | 0.2152    | 0.1007 | 0.1888 | 0.2253  | 0.1617    | 0.296      | 0.3717    | 0.2349  | 0.3698      | 0.2549  | 0.4235      | 0.0408         | 0.108              | 0.0       | 0.0           |
| 1.2893        | 11.0  | 15741 | 1.2871          | 0.1484 | 0.3003 | 0.1276 | 0.0933    | 0.238      | 0.2028    | 0.1031 | 0.1992 | 0.2366  | 0.1757    | 0.3048     | 0.3834    | 0.2554  | 0.38        | 0.2745  | 0.4563      | 0.0636         | 0.1103             | 0.0       | 0.0           |
| 1.2561        | 12.0  | 17172 | 1.2404          | 0.1442 | 0.2917 | 0.1245 | 0.0882    | 0.2375     | 0.1869    | 0.1004 | 0.1959 | 0.2316  | 0.1664    | 0.303      | 0.358     | 0.2566  | 0.3783      | 0.2622  | 0.4316      | 0.0581         | 0.1166             | 0.0       | 0.0           |
| 1.2142        | 13.0  | 18603 | 1.2255          | 0.1529 | 0.3127 | 0.1346 | 0.0976    | 0.2445     | 0.2094    | 0.1027 | 0.2058 | 0.2415  | 0.1803    | 0.3083     | 0.364     | 0.2686  | 0.3803      | 0.2821  | 0.4653      | 0.0607         | 0.1206             | 0.0       | 0.0           |
| 1.2031        | 14.0  | 20034 | 1.1940          | 0.1576 | 0.3085 | 0.144  | 0.1005    | 0.2502     | 0.1978    | 0.1083 | 0.208  | 0.2453  | 0.1816    | 0.3129     | 0.3738    | 0.2918  | 0.3994      | 0.2798  | 0.4637      | 0.0585         | 0.1183             | 0.0       | 0.0           |
| 1.1984        | 15.0  | 21465 | 1.1855          | 0.1603 | 0.3121 | 0.1475 | 0.1035    | 0.2533     | 0.217     | 0.1079 | 0.211  | 0.2505  | 0.1842    | 0.321      | 0.3969    | 0.2929  | 0.3983      | 0.2924  | 0.4865      | 0.0561         | 0.1171             | 0.0       | 0.0           |
| 1.1851        | 16.0  | 22896 | 1.1813          | 0.1616 | 0.3207 | 0.1411 | 0.1027    | 0.2557     | 0.2162    | 0.1103 | 0.2076 | 0.2448  | 0.1785    | 0.3165     | 0.3894    | 0.2888  | 0.3972      | 0.2986  | 0.469       | 0.0591         | 0.1131             | 0.0       | 0.0           |
| 1.1626        | 17.0  | 24327 | 1.1633          | 0.1661 | 0.3274 | 0.1543 | 0.1083    | 0.2577     | 0.2191    | 0.1119 | 0.217  | 0.2545  | 0.1875    | 0.3228     | 0.4001    | 0.2947  | 0.4027      | 0.3086  | 0.4912      | 0.0609         | 0.124              | 0.0       | 0.0           |
| 1.1577        | 18.0  | 25758 | 1.1572          | 0.1688 | 0.3267 | 0.1577 | 0.1104    | 0.2614     | 0.2228    | 0.1136 | 0.218  | 0.2552  | 0.1908    | 0.3224     | 0.406     | 0.2997  | 0.4064      | 0.3121  | 0.4946      | 0.0634         | 0.12               | 0.0       | 0.0           |
| 1.1682        | 19.0  | 27189 | 1.1584          | 0.1685 | 0.3254 | 0.1554 | 0.1103    | 0.2611     | 0.2207    | 0.1114 | 0.2156 | 0.2525  | 0.187     | 0.3218     | 0.4025    | 0.2985  | 0.406       | 0.3119  | 0.4897      | 0.0636         | 0.1143             | 0.0       | 0.0           |
| 1.135         | 20.0  | 28620 | 1.1571          | 0.1696 | 0.3271 | 0.1562 | 0.1107    | 0.2616     | 0.2231    | 0.1116 | 0.2157 | 0.2529  | 0.1876    | 0.3221     | 0.4017    | 0.2983  | 0.4065      | 0.3148  | 0.491       | 0.0651         | 0.1143             | 0.0       | 0.0           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1