Upload PPO LunarLander-v2 trained agent 120M_steps
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 294.16 +/- 21.42
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x00000190DFC15BF8>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x00000190DFC15C80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x00000190DFC15D08>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x00000190DFC15D90>", "_build": "<function ActorCriticPolicy._build at 0x00000190DFC15E18>", "forward": "<function ActorCriticPolicy.forward at 0x00000190DFC15EA0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x00000190DFC15F28>", "_predict": "<function ActorCriticPolicy._predict at 0x00000190DFC18048>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000190DFC180D0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x00000190DFC18158>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x00000190DFC181E0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x00000190DFC12240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 120029184, "_total_timesteps": 120000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673361616524306000, "learning_rate": 3e-05, "tensorboard_log": ".\\Log", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGBMOlwhISFBSVxDdXJzIGh1Z2dpbmdmYWNlIFJMXFB5dGhvbl9lbnZcdmVudlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+/3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQQAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSyBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIABAAAs24fPaqfEj5iEEG+UVMEv4SDZD0SeUq+AAAAAAAAAABmdiM77FPtu0mqQzvDO4I8nehdPR2RW70AAIA/AACAP2YeRbsI9/a8a7mHvh548Du724g9Gj2ZPQAAgD8AAIA/AD5rPB9V8LnFM0818wEnMeDWLjtGJk60AACAPwAAgD/NzIO4UpfTuzzwNTwXQpg8TXJIvXbyfz0AAIA/AACAPwCsVLzSFca79/MnvSmuFjyFTQs9DZQ/vQAAgD8AAIA/mg2pvGyJg7v9WpI9DZW9PAKDsLw6aqA9AACAPwAAgD9ml628KZBHuo/ZqLWKMjixrcInOgbX0TQAAIA/AACAP0AEBj60aiw+ciiYvq5EHr8w+qs9YbmNvgAAAAAAAAAAQNKdva4q5D1vcJ8+csUDvzhgkbzswSg+AAAAAAAAAACayVG7rqGiuq0d+rGtpE0whputuuCTxjEAAIA/AACAP5pkiTwA1VI/PpEJPDPGf78Y1YA93+8IvQAAAAAAAAAAM889vU1GCD9ncRi9Ep1Yvz6Kgb24sKu9AAAAAAAAAADa5sA9Qk2PPlb3R74avh6/QJPGPRP9Nb4AAAAAAAAAACYjFb6KN5A+hS8GP1vFJ78V8pc9Qr6mPgAAAAAAAAAAZp6PO3ZHM7z3jYE7QdQXPMBRlz1JwgK9AACAPwAAgD8a/Qq9hTjNu1h2ZzxlS6U8fw0svRu8iz0AAIA/AACAPzMfkrxX+W0/0jJFve1Cfb+Djbg8KNVNvQAAAAAAAAAAGgsxvU/LTrwhT4w+p89nvv2UJLsiwCm+AACAPwAAgD8AOI28+MKeP+jZib30xiG/xsQhPfP3OT0AAAAAAAAAAM2W0b3bePg9GrhbPonsAb9Pd9y9V1zEPQAAAAAAAAAAmhUhPBZohD/Q+Qk9DdRuv2REkT2+yGc8AAAAAAAAAADmLnG9tgFEPYfohT5SXNC+adxSPDmsJT4AAAAAAAAAAMZSZD5C/nU/nptvPdRlOb/e7BM/QHo3vgAAAAAAAAAAs7sqvSHXbD4E87i82QsUv/m25r2i3XS7AAAAAAAAAADGh5E+1vGGP9GYtj1yNQ2/heg2P8BCv70AAAAAAAAAAJqZK7kU9oy6MmkZM31gejCBFie7OBa2swAAgD8AAIA/mue2vM6o3rzqvSY9hF0oPZYqQTw4TKi8AACAPwAAgD+ahYk7qUkOvFUCpzo6Rbo8bFklPeb0K7kAAIA/AACAPzOHtzvhKIm6MzQevJTbvjiNMSI6lNUruAAAgD8AAIA/mpt/vbxhPT2NIl8+QwzBviitmr1TUNQ9AAAAAAAAAACa8K684UilupwUObZQ7IGxKRaNOHb1YzUAAIA/AACAP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVqAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSyCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYi4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00024320000000011, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOey+Y/gLdECUhpRSlIwBbJRLyowBdJRHQPPORH9LpRp1fZQoaAZoCWgPQwiJ7e4BeldzQJSGlFKUaBVLu2gWR0DzzkUjIq9XdX2UKGgGaAloD0MIEodsIB17dECUhpRSlGgVS6loFkdA885GHPqs2nV9lChoBmgJaA9DCJdV2AxwRnFAlIaUUpRoFUukaBZHQPPOR0wblzV1fZQoaAZoCWgPQwjOcAM+/w9wQJSGlFKUaBVLs2gWR0DzzkdIAwPAdX2UKGgGaAloD0MIgJ9x4YBtcUCUhpRSlGgVS5NoFkdA885H/DtPYXV9lChoBmgJaA9DCAfSxaZVAnNAlIaUUpRoFUu5aBZHQPPOSLio86p1fZQoaAZoCWgPQwjT2cngqNRzQJSGlFKUaBVLwGgWR0DzzkkKkEcLdX2UKGgGaAloD0MIKETAIVQZdECUhpRSlGgVS8FoFkdA885Kk8aGYnV9lChoBmgJaA9DCCL8i6AxrXNAlIaUUpRoFUu1aBZHQPPOS0wWWQh1fZQoaAZoCWgPQwg+6NmsOrJxQJSGlFKUaBVLvGgWR0DzzkwANoaldX2UKGgGaAloD0MI8Sprm6IsckCUhpRSlGgVS81oFkdA885MNZA6dXV9lChoBmgJaA9DCJ7t0RsuxXJAlIaUUpRoFU0VAWgWR0DzzkxSUTtcdX2UKGgGaAloD0MI2SQ/4hdNcUCUhpRSlGgVS8xoFkdA885Mi5VfeHV9lChoBmgJaA9DCDf/rzpytnFAlIaUUpRoFUvQaBZHQPPOTNVNpM91fZQoaAZoCWgPQwjJVwIpsdlxQJSGlFKUaBVLkGgWR0Dzzk/C4z7/dX2UKGgGaAloD0MIVB9I3jkpc0CUhpRSlGgVS8toFkdA885Qi5VfeHV9lChoBmgJaA9DCDVCP1MvkHFAlIaUUpRoFUulaBZHQPPOULSLIgh1fZQoaAZoCWgPQwiERrBx/b9zQJSGlFKUaBVLsGgWR0DzzlFcer+6dX2UKGgGaAloD0MIZHRAEjYqcUCUhpRSlGgVS69oFkdA885SHP3SKHV9lChoBmgJaA9DCBgHl465Q3JAlIaUUpRoFUviaBZHQPPOUmrNnoR1fZQoaAZoCWgPQwhUHt0Ii0BzQJSGlFKUaBVLuGgWR0DzzlKsWfsedX2UKGgGaAloD0MIwMx38JPQckCUhpRSlGgVS8ZoFkdA885Uk8mrsHV9lChoBmgJaA9DCJliDoKO63NAlIaUUpRoFUvEaBZHQPPOVJPGhmJ1fZQoaAZoCWgPQwhd3hyulTBzQJSGlFKUaBVL0GgWR0DzzlYU0elsdX2UKGgGaAloD0MIJO1GHzNcdECUhpRSlGgVS75oFkdA885WOajN6nV9lChoBmgJaA9DCET7WMEvOnNAlIaUUpRoFUvtaBZHQPPOVnLkjop1fZQoaAZoCWgPQwjZsKayqPFvQJSGlFKUaBVLvWgWR0DzzlawcYIjdX2UKGgGaAloD0MIjup0IGsFcUCUhpRSlGgVS7ZoFkdA885XQ+6iCnV9lChoBmgJaA9DCIOJP4o6FHNAlIaUUpRoFUuzaBZHQPPOV1x6v7p1fZQoaAZoCWgPQwhLOV/sfeJxQJSGlFKUaBVLv2gWR0DzzleqTbFkdX2UKGgGaAloD0MIeEXwv5Vsc0CUhpRSlGgVS9NoFkdA885Xqk2xZHV9lChoBmgJaA9DCL3l6scmNHBAlIaUUpRoFUuvaBZHQPPOWKxcE/11fZQoaAZoCWgPQwikqgmi7gpyQJSGlFKUaBVLlWgWR0Dzzlj+S8radX2UKGgGaAloD0MIsTIa+bzMcUCUhpRSlGgVS7NoFkdA885aNY0VJ3V9lChoBmgJaA9DCKK0N/iCg3NAlIaUUpRoFUu2aBZHQPPOWn9Oymh1fZQoaAZoCWgPQwh2pWWknn1zQJSGlFKUaBVL8GgWR0Dzzlqf7aZhdX2UKGgGaAloD0MIa378pYUNc0CUhpRSlGgVS95oFkdA885cTiS7oXV9lChoBmgJaA9DCJ1LcVVZEHRAlIaUUpRoFUvRaBZHQPPOXgRoRI11fZQoaAZoCWgPQwg9YB4yJXtzQJSGlFKUaBVLsWgWR0Dzzl64m1IAdX2UKGgGaAloD0MIgzC3ezk1ckCUhpRSlGgVS7loFkdA885e6ciGFnV9lChoBmgJaA9DCHqlLENc1nJAlIaUUpRoFUu3aBZHQPPOX6pOvdN1fZQoaAZoCWgPQwgQk3Ahjw5zQJSGlFKUaBVLuWgWR0DzzmBBwMpgdX2UKGgGaAloD0MIHmyx2ycbckCUhpRSlGgVS85oFkdA885gk8mrsHV9lChoBmgJaA9DCKIOK9wyanNAlIaUUpRoFUu/aBZHQPPOYLikwex1fZQoaAZoCWgPQwgAVdy4he5xQJSGlFKUaBVLm2gWR0DzzmE7tiQUdX2UKGgGaAloD0MI4JwRpX0RcUCUhpRSlGgVS8NoFkdA885hohpxm3V9lChoBmgJaA9DCAxWnGptnnNAlIaUUpRoFUvxaBZHQPPOYmaZx711fZQoaAZoCWgPQwhYcD/ggeRxQJSGlFKUaBVLqWgWR0DzzmQQtSQ6dX2UKGgGaAloD0MIYfw07o1JcUCUhpRSlGgVS6VoFkdA885kMXrMT3V9lChoBmgJaA9DCDSGOUFbbHFAlIaUUpRoFUuXaBZHQPPOZKAVfu11fZQoaAZoCWgPQwhIiPIFrVVwQJSGlFKUaBVLt2gWR0DzzmTRGc4HdX2UKGgGaAloD0MI+vAsQcb6ckCUhpRSlGgVS69oFkdA885lBlYlp3V9lChoBmgJaA9DCKlr7X1qPnJAlIaUUpRoFUvAaBZHQPPOZQJBw/B1fZQoaAZoCWgPQwhljA+zF2tzQJSGlFKUaBVL1mgWR0DzzmaTxoZidX2UKGgGaAloD0MIf6MdNzwxcUCUhpRSlGgVS6xoFkdA885myQcPv3V9lChoBmgJaA9DCFCKVu4FmERAlIaUUpRoFUtjaBZHQPPOZwZbY9R1fZQoaAZoCWgPQwjaOGItvrxuQJSGlFKUaBVLomgWR0Dzzmc7sv7FdX2UKGgGaAloD0MI/fm2YOlBcECUhpRSlGgVS6loFkdA885oj4593XV9lChoBmgJaA9DCDEJF/KI829AlIaUUpRoFUupaBZHQPPOaS9tdiV1fZQoaAZoCWgPQwjX3qeqkF5yQJSGlFKUaBVLu2gWR0Dzzmn8PnSwdX2UKGgGaAloD0MItMpMaf3zcUCUhpRSlGgVS7hoFkdA885qm/vfCXV9lChoBmgJaA9DCEHTEivjl3JAlIaUUpRoFUu5aBZHQPPOaxbaAWl1fZQoaAZoCWgPQwjG+ZtQiDFzQJSGlFKUaBVLu2gWR0DzzmtUSIxhdX2UKGgGaAloD0MIv2N47OdvckCUhpRSlGgVS6loFkdA885sh3iaRnV9lChoBmgJaA9DCH8SnzuBDHNAlIaUUpRoFUuvaBZHQPPObMTtb9t1fZQoaAZoCWgPQwhffTz03ShyQJSGlFKUaBVLyWgWR0Dzzm3TP0I1dX2UKGgGaAloD0MIWWyTiobYcUCUhpRSlGgVS99oFkdA885t79AHFHV9lChoBmgJaA9DCOG3IcbrgnNAlIaUUpRoFUvKaBZHQPPObkoNNJx1fZQoaAZoCWgPQwgydsJLsORxQJSGlFKUaBVLy2gWR0DzznAdAxBWdX2UKGgGaAloD0MIXkvIB33cckCUhpRSlGgVS6FoFkdA885ztqHoHXV9lChoBmgJaA9DCES+S6kL8nJAlIaUUpRoFUvEaBZHQPPOdClJpWV1fZQoaAZoCWgPQwirQZjbfZVyQJSGlFKUaBVLyGgWR0DzznRzBhx6dX2UKGgGaAloD0MIQnkfR3MGckCUhpRSlGgVS8BoFkdA8850cwUQCnV9lChoBmgJaA9DCEXZW8p5mm9AlIaUUpRoFUu8aBZHQPPOdI+t8u11fZQoaAZoCWgPQwiF7LyNTTByQJSGlFKUaBVLnWgWR0DzznUfDDTCdX2UKGgGaAloD0MIGF3eHO6Qc0CUhpRSlGgVS7poFkdA8851WETQFHV9lChoBmgJaA9DCMCuJk+ZpXFAlIaUUpRoFUvDaBZHQPPOdcLDye91fZQoaAZoCWgPQwhVih2Nw19wQJSGlFKUaBVL4WgWR0DzznZy/9HddX2UKGgGaAloD0MIxv1HpsNgc0CUhpRSlGgVS8loFkdA8853Q+UyHnV9lChoBmgJaA9DCBXEQNf+E3NAlIaUUpRoFUu5aBZHQPPOeBz+3ph1fZQoaAZoCWgPQwhxj6UPXTxyQJSGlFKUaBVLo2gWR0Dzznhmm+CcdX2UKGgGaAloD0MIWivaHKfDc0CUhpRSlGgVS7poFkdA88540Tg2qHV9lChoBmgJaA9DCAW/DTFefUBAlIaUUpRoFUtxaBZHQPPOeOWRigF1fZQoaAZoCWgPQwi3Q8NiVBlyQJSGlFKUaBVLqWgWR0DzznlgkTpQdX2UKGgGaAloD0MILNZwkXtJc0CUhpRSlGgVS8hoFkdA8855/BrN4nV9lChoBmgJaA9DCHB6F++H7nFAlIaUUpRoFUu3aBZHQPPOeoNmUW51fZQoaAZoCWgPQwhyGMxfobhxQJSGlFKUaBVLzWgWR0DzznrJBw+/dX2UKGgGaAloD0MI7+TTY1sGdECUhpRSlGgVS85oFkdA88566cZtN3V9lChoBmgJaA9DCDdPdchNQ3FAlIaUUpRoFUuuaBZHQPPOe5nwob51fZQoaAZoCWgPQwj9h/Tb1/tyQJSGlFKUaBVLqGgWR0DzznxmtyPudX2UKGgGaAloD0MINsr6zUS8ckCUhpRSlGgVS7NoFkdA88582UjcEnV9lChoBmgJaA9DCHYWvVPBpHNAlIaUUpRoFU0PAWgWR0Dzzn0nPE88dX2UKGgGaAloD0MI4dBbPPyCckCUhpRSlGgVS6poFkdA8859R+F10XV9lChoBmgJaA9DCAuW6gJeCXRAlIaUUpRoFUvbaBZHQPPOfaY1He91fZQoaAZoCWgPQwgaNsr6jZ1wQJSGlFKUaBVLnGgWR0Dzzn5SPU8WdX2UKGgGaAloD0MIeNMtO0QTcUCUhpRSlGgVS91oFkdA885/uq//N3V9lChoBmgJaA9DCCjTaHLxw3NAlIaUUpRoFUvFaBZHQPPOf9MmF8J1fZQoaAZoCWgPQwheTDPdKzhwQJSGlFKUaBVLtGgWR0DzzoC0hvBKdX2UKGgGaAloD0MIzzC1pU5oc0CUhpRSlGgVS8RoFkdA886BTBRAKXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 14652, "n_steps": 1024, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGBMOlwhISFBSVxDdXJzIGh1Z2dpbmdmYWNlIFJMXFB5dGhvbl9lbnZcdmVudlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.19041-SP0 10.0.19041", "Python": "3.7.0", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c94120871898543057495b1b161d302f71cb4c2be73f415e0b99e31f9f24925
|
3 |
+
size 147909
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x00000190DFC15BF8>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x00000190DFC15C80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x00000190DFC15D08>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x00000190DFC15D90>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x00000190DFC15E18>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x00000190DFC15EA0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x00000190DFC15F28>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x00000190DFC18048>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000190DFC180D0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x00000190DFC18158>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x00000190DFC181E0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x00000190DFC12240>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 32,
|
45 |
+
"num_timesteps": 120029184,
|
46 |
+
"_total_timesteps": 120000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1673361616524306000,
|
51 |
+
"learning_rate": 3e-05,
|
52 |
+
"tensorboard_log": ".\\Log",
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGBMOlwhISFBSVxDdXJzIGh1Z2dpbmdmYWNlIFJMXFB5dGhvbl9lbnZcdmVudlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+/3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQQAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSyBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIABAAAs24fPaqfEj5iEEG+UVMEv4SDZD0SeUq+AAAAAAAAAABmdiM77FPtu0mqQzvDO4I8nehdPR2RW70AAIA/AACAP2YeRbsI9/a8a7mHvh548Du724g9Gj2ZPQAAgD8AAIA/AD5rPB9V8LnFM0818wEnMeDWLjtGJk60AACAPwAAgD/NzIO4UpfTuzzwNTwXQpg8TXJIvXbyfz0AAIA/AACAPwCsVLzSFca79/MnvSmuFjyFTQs9DZQ/vQAAgD8AAIA/mg2pvGyJg7v9WpI9DZW9PAKDsLw6aqA9AACAPwAAgD9ml628KZBHuo/ZqLWKMjixrcInOgbX0TQAAIA/AACAP0AEBj60aiw+ciiYvq5EHr8w+qs9YbmNvgAAAAAAAAAAQNKdva4q5D1vcJ8+csUDvzhgkbzswSg+AAAAAAAAAACayVG7rqGiuq0d+rGtpE0whputuuCTxjEAAIA/AACAP5pkiTwA1VI/PpEJPDPGf78Y1YA93+8IvQAAAAAAAAAAM889vU1GCD9ncRi9Ep1Yvz6Kgb24sKu9AAAAAAAAAADa5sA9Qk2PPlb3R74avh6/QJPGPRP9Nb4AAAAAAAAAACYjFb6KN5A+hS8GP1vFJ78V8pc9Qr6mPgAAAAAAAAAAZp6PO3ZHM7z3jYE7QdQXPMBRlz1JwgK9AACAPwAAgD8a/Qq9hTjNu1h2ZzxlS6U8fw0svRu8iz0AAIA/AACAPzMfkrxX+W0/0jJFve1Cfb+Djbg8KNVNvQAAAAAAAAAAGgsxvU/LTrwhT4w+p89nvv2UJLsiwCm+AACAPwAAgD8AOI28+MKeP+jZib30xiG/xsQhPfP3OT0AAAAAAAAAAM2W0b3bePg9GrhbPonsAb9Pd9y9V1zEPQAAAAAAAAAAmhUhPBZohD/Q+Qk9DdRuv2REkT2+yGc8AAAAAAAAAADmLnG9tgFEPYfohT5SXNC+adxSPDmsJT4AAAAAAAAAAMZSZD5C/nU/nptvPdRlOb/e7BM/QHo3vgAAAAAAAAAAs7sqvSHXbD4E87i82QsUv/m25r2i3XS7AAAAAAAAAADGh5E+1vGGP9GYtj1yNQ2/heg2P8BCv70AAAAAAAAAAJqZK7kU9oy6MmkZM31gejCBFie7OBa2swAAgD8AAIA/mue2vM6o3rzqvSY9hF0oPZYqQTw4TKi8AACAPwAAgD+ahYk7qUkOvFUCpzo6Rbo8bFklPeb0K7kAAIA/AACAPzOHtzvhKIm6MzQevJTbvjiNMSI6lNUruAAAgD8AAIA/mpt/vbxhPT2NIl8+QwzBviitmr1TUNQ9AAAAAAAAAACa8K684UilupwUObZQ7IGxKRaNOHb1YzUAAIA/AACAP5R0lGIu"
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVqAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSyCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYi4="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.00024320000000011,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOey+Y/gLdECUhpRSlIwBbJRLyowBdJRHQPPORH9LpRp1fZQoaAZoCWgPQwiJ7e4BeldzQJSGlFKUaBVLu2gWR0DzzkUjIq9XdX2UKGgGaAloD0MIEodsIB17dECUhpRSlGgVS6loFkdA885GHPqs2nV9lChoBmgJaA9DCJdV2AxwRnFAlIaUUpRoFUukaBZHQPPOR0wblzV1fZQoaAZoCWgPQwjOcAM+/w9wQJSGlFKUaBVLs2gWR0DzzkdIAwPAdX2UKGgGaAloD0MIgJ9x4YBtcUCUhpRSlGgVS5NoFkdA885H/DtPYXV9lChoBmgJaA9DCAfSxaZVAnNAlIaUUpRoFUu5aBZHQPPOSLio86p1fZQoaAZoCWgPQwjT2cngqNRzQJSGlFKUaBVLwGgWR0DzzkkKkEcLdX2UKGgGaAloD0MIKETAIVQZdECUhpRSlGgVS8FoFkdA885Kk8aGYnV9lChoBmgJaA9DCCL8i6AxrXNAlIaUUpRoFUu1aBZHQPPOS0wWWQh1fZQoaAZoCWgPQwg+6NmsOrJxQJSGlFKUaBVLvGgWR0DzzkwANoaldX2UKGgGaAloD0MI8Sprm6IsckCUhpRSlGgVS81oFkdA885MNZA6dXV9lChoBmgJaA9DCJ7t0RsuxXJAlIaUUpRoFU0VAWgWR0DzzkxSUTtcdX2UKGgGaAloD0MI2SQ/4hdNcUCUhpRSlGgVS8xoFkdA885Mi5VfeHV9lChoBmgJaA9DCDf/rzpytnFAlIaUUpRoFUvQaBZHQPPOTNVNpM91fZQoaAZoCWgPQwjJVwIpsdlxQJSGlFKUaBVLkGgWR0Dzzk/C4z7/dX2UKGgGaAloD0MIVB9I3jkpc0CUhpRSlGgVS8toFkdA885Qi5VfeHV9lChoBmgJaA9DCDVCP1MvkHFAlIaUUpRoFUulaBZHQPPOULSLIgh1fZQoaAZoCWgPQwiERrBx/b9zQJSGlFKUaBVLsGgWR0DzzlFcer+6dX2UKGgGaAloD0MIZHRAEjYqcUCUhpRSlGgVS69oFkdA885SHP3SKHV9lChoBmgJaA9DCBgHl465Q3JAlIaUUpRoFUviaBZHQPPOUmrNnoR1fZQoaAZoCWgPQwhUHt0Ii0BzQJSGlFKUaBVLuGgWR0DzzlKsWfsedX2UKGgGaAloD0MIwMx38JPQckCUhpRSlGgVS8ZoFkdA885Uk8mrsHV9lChoBmgJaA9DCJliDoKO63NAlIaUUpRoFUvEaBZHQPPOVJPGhmJ1fZQoaAZoCWgPQwhd3hyulTBzQJSGlFKUaBVL0GgWR0DzzlYU0elsdX2UKGgGaAloD0MIJO1GHzNcdECUhpRSlGgVS75oFkdA885WOajN6nV9lChoBmgJaA9DCET7WMEvOnNAlIaUUpRoFUvtaBZHQPPOVnLkjop1fZQoaAZoCWgPQwjZsKayqPFvQJSGlFKUaBVLvWgWR0DzzlawcYIjdX2UKGgGaAloD0MIjup0IGsFcUCUhpRSlGgVS7ZoFkdA885XQ+6iCnV9lChoBmgJaA9DCIOJP4o6FHNAlIaUUpRoFUuzaBZHQPPOV1x6v7p1fZQoaAZoCWgPQwhLOV/sfeJxQJSGlFKUaBVLv2gWR0DzzleqTbFkdX2UKGgGaAloD0MIeEXwv5Vsc0CUhpRSlGgVS9NoFkdA885Xqk2xZHV9lChoBmgJaA9DCL3l6scmNHBAlIaUUpRoFUuvaBZHQPPOWKxcE/11fZQoaAZoCWgPQwikqgmi7gpyQJSGlFKUaBVLlWgWR0Dzzlj+S8radX2UKGgGaAloD0MIsTIa+bzMcUCUhpRSlGgVS7NoFkdA885aNY0VJ3V9lChoBmgJaA9DCKK0N/iCg3NAlIaUUpRoFUu2aBZHQPPOWn9Oymh1fZQoaAZoCWgPQwh2pWWknn1zQJSGlFKUaBVL8GgWR0Dzzlqf7aZhdX2UKGgGaAloD0MIa378pYUNc0CUhpRSlGgVS95oFkdA885cTiS7oXV9lChoBmgJaA9DCJ1LcVVZEHRAlIaUUpRoFUvRaBZHQPPOXgRoRI11fZQoaAZoCWgPQwg9YB4yJXtzQJSGlFKUaBVLsWgWR0Dzzl64m1IAdX2UKGgGaAloD0MIgzC3ezk1ckCUhpRSlGgVS7loFkdA885e6ciGFnV9lChoBmgJaA9DCHqlLENc1nJAlIaUUpRoFUu3aBZHQPPOX6pOvdN1fZQoaAZoCWgPQwgQk3Ahjw5zQJSGlFKUaBVLuWgWR0DzzmBBwMpgdX2UKGgGaAloD0MIHmyx2ycbckCUhpRSlGgVS85oFkdA885gk8mrsHV9lChoBmgJaA9DCKIOK9wyanNAlIaUUpRoFUu/aBZHQPPOYLikwex1fZQoaAZoCWgPQwgAVdy4he5xQJSGlFKUaBVLm2gWR0DzzmE7tiQUdX2UKGgGaAloD0MI4JwRpX0RcUCUhpRSlGgVS8NoFkdA885hohpxm3V9lChoBmgJaA9DCAxWnGptnnNAlIaUUpRoFUvxaBZHQPPOYmaZx711fZQoaAZoCWgPQwhYcD/ggeRxQJSGlFKUaBVLqWgWR0DzzmQQtSQ6dX2UKGgGaAloD0MIYfw07o1JcUCUhpRSlGgVS6VoFkdA885kMXrMT3V9lChoBmgJaA9DCDSGOUFbbHFAlIaUUpRoFUuXaBZHQPPOZKAVfu11fZQoaAZoCWgPQwhIiPIFrVVwQJSGlFKUaBVLt2gWR0DzzmTRGc4HdX2UKGgGaAloD0MI+vAsQcb6ckCUhpRSlGgVS69oFkdA885lBlYlp3V9lChoBmgJaA9DCKlr7X1qPnJAlIaUUpRoFUvAaBZHQPPOZQJBw/B1fZQoaAZoCWgPQwhljA+zF2tzQJSGlFKUaBVL1mgWR0DzzmaTxoZidX2UKGgGaAloD0MIf6MdNzwxcUCUhpRSlGgVS6xoFkdA885myQcPv3V9lChoBmgJaA9DCFCKVu4FmERAlIaUUpRoFUtjaBZHQPPOZwZbY9R1fZQoaAZoCWgPQwjaOGItvrxuQJSGlFKUaBVLomgWR0Dzzmc7sv7FdX2UKGgGaAloD0MI/fm2YOlBcECUhpRSlGgVS6loFkdA885oj4593XV9lChoBmgJaA9DCDEJF/KI829AlIaUUpRoFUupaBZHQPPOaS9tdiV1fZQoaAZoCWgPQwjX3qeqkF5yQJSGlFKUaBVLu2gWR0Dzzmn8PnSwdX2UKGgGaAloD0MItMpMaf3zcUCUhpRSlGgVS7hoFkdA885qm/vfCXV9lChoBmgJaA9DCEHTEivjl3JAlIaUUpRoFUu5aBZHQPPOaxbaAWl1fZQoaAZoCWgPQwjG+ZtQiDFzQJSGlFKUaBVLu2gWR0DzzmtUSIxhdX2UKGgGaAloD0MIv2N47OdvckCUhpRSlGgVS6loFkdA885sh3iaRnV9lChoBmgJaA9DCH8SnzuBDHNAlIaUUpRoFUuvaBZHQPPObMTtb9t1fZQoaAZoCWgPQwhffTz03ShyQJSGlFKUaBVLyWgWR0Dzzm3TP0I1dX2UKGgGaAloD0MIWWyTiobYcUCUhpRSlGgVS99oFkdA885t79AHFHV9lChoBmgJaA9DCOG3IcbrgnNAlIaUUpRoFUvKaBZHQPPObkoNNJx1fZQoaAZoCWgPQwgydsJLsORxQJSGlFKUaBVLy2gWR0DzznAdAxBWdX2UKGgGaAloD0MIXkvIB33cckCUhpRSlGgVS6FoFkdA885ztqHoHXV9lChoBmgJaA9DCES+S6kL8nJAlIaUUpRoFUvEaBZHQPPOdClJpWV1fZQoaAZoCWgPQwirQZjbfZVyQJSGlFKUaBVLyGgWR0DzznRzBhx6dX2UKGgGaAloD0MIQnkfR3MGckCUhpRSlGgVS8BoFkdA8850cwUQCnV9lChoBmgJaA9DCEXZW8p5mm9AlIaUUpRoFUu8aBZHQPPOdI+t8u11fZQoaAZoCWgPQwiF7LyNTTByQJSGlFKUaBVLnWgWR0DzznUfDDTCdX2UKGgGaAloD0MIGF3eHO6Qc0CUhpRSlGgVS7poFkdA8851WETQFHV9lChoBmgJaA9DCMCuJk+ZpXFAlIaUUpRoFUvDaBZHQPPOdcLDye91fZQoaAZoCWgPQwhVih2Nw19wQJSGlFKUaBVL4WgWR0DzznZy/9HddX2UKGgGaAloD0MIxv1HpsNgc0CUhpRSlGgVS8loFkdA8853Q+UyHnV9lChoBmgJaA9DCBXEQNf+E3NAlIaUUpRoFUu5aBZHQPPOeBz+3ph1fZQoaAZoCWgPQwhxj6UPXTxyQJSGlFKUaBVLo2gWR0Dzznhmm+CcdX2UKGgGaAloD0MIWivaHKfDc0CUhpRSlGgVS7poFkdA88540Tg2qHV9lChoBmgJaA9DCAW/DTFefUBAlIaUUpRoFUtxaBZHQPPOeOWRigF1fZQoaAZoCWgPQwi3Q8NiVBlyQJSGlFKUaBVLqWgWR0DzznlgkTpQdX2UKGgGaAloD0MILNZwkXtJc0CUhpRSlGgVS8hoFkdA8855/BrN4nV9lChoBmgJaA9DCHB6F++H7nFAlIaUUpRoFUu3aBZHQPPOeoNmUW51fZQoaAZoCWgPQwhyGMxfobhxQJSGlFKUaBVLzWgWR0DzznrJBw+/dX2UKGgGaAloD0MI7+TTY1sGdECUhpRSlGgVS85oFkdA88566cZtN3V9lChoBmgJaA9DCDdPdchNQ3FAlIaUUpRoFUuuaBZHQPPOe5nwob51fZQoaAZoCWgPQwj9h/Tb1/tyQJSGlFKUaBVLqGgWR0DzznxmtyPudX2UKGgGaAloD0MINsr6zUS8ckCUhpRSlGgVS7NoFkdA88582UjcEnV9lChoBmgJaA9DCHYWvVPBpHNAlIaUUpRoFU0PAWgWR0Dzzn0nPE88dX2UKGgGaAloD0MI4dBbPPyCckCUhpRSlGgVS6poFkdA8859R+F10XV9lChoBmgJaA9DCAuW6gJeCXRAlIaUUpRoFUvbaBZHQPPOfaY1He91fZQoaAZoCWgPQwgaNsr6jZ1wQJSGlFKUaBVLnGgWR0Dzzn5SPU8WdX2UKGgGaAloD0MIeNMtO0QTcUCUhpRSlGgVS91oFkdA885/uq//N3V9lChoBmgJaA9DCCjTaHLxw3NAlIaUUpRoFUvFaBZHQPPOf9MmF8J1fZQoaAZoCWgPQwheTDPdKzhwQJSGlFKUaBVLtGgWR0DzzoC0hvBKdX2UKGgGaAloD0MIzzC1pU5oc0CUhpRSlGgVS8RoFkdA886BTBRAKXVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 14652,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.9999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGBMOlwhISFBSVxDdXJzIGh1Z2dpbmdmYWNlIFJMXFB5dGhvbl9lbnZcdmVudlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4296348f808b227b81236f9fb9484ed4453a96890ec9903d468677d8cc084b3f
|
3 |
+
size 88057
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:878c9b9815f467f7b8604b141d9b187866ce32ce0baecbb3640b37c0df4985be
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Windows-10-10.0.19041-SP0 10.0.19041
|
2 |
+
Python: 3.7.0
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.1+cu117
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (181 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 294.15540623250763, "std_reward": 21.422625056326236, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-11T18:16:17.892594"}
|