Art-phys commited on
Commit
db7cce5
·
1 Parent(s): 5c29a92

Upload PPO LunarLander-v2 trained agent 120M_steps

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 294.16 +/- 21.42
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x00000190DFC15BF8>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x00000190DFC15C80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x00000190DFC15D08>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x00000190DFC15D90>", "_build": "<function ActorCriticPolicy._build at 0x00000190DFC15E18>", "forward": "<function ActorCriticPolicy.forward at 0x00000190DFC15EA0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x00000190DFC15F28>", "_predict": "<function ActorCriticPolicy._predict at 0x00000190DFC18048>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000190DFC180D0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x00000190DFC18158>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x00000190DFC181E0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x00000190DFC12240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 120029184, "_total_timesteps": 120000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673361616524306000, "learning_rate": 3e-05, "tensorboard_log": ".\\Log", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGBMOlwhISFBSVxDdXJzIGh1Z2dpbmdmYWNlIFJMXFB5dGhvbl9lbnZcdmVudlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+/3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQQAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSyBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIABAAAs24fPaqfEj5iEEG+UVMEv4SDZD0SeUq+AAAAAAAAAABmdiM77FPtu0mqQzvDO4I8nehdPR2RW70AAIA/AACAP2YeRbsI9/a8a7mHvh548Du724g9Gj2ZPQAAgD8AAIA/AD5rPB9V8LnFM0818wEnMeDWLjtGJk60AACAPwAAgD/NzIO4UpfTuzzwNTwXQpg8TXJIvXbyfz0AAIA/AACAPwCsVLzSFca79/MnvSmuFjyFTQs9DZQ/vQAAgD8AAIA/mg2pvGyJg7v9WpI9DZW9PAKDsLw6aqA9AACAPwAAgD9ml628KZBHuo/ZqLWKMjixrcInOgbX0TQAAIA/AACAP0AEBj60aiw+ciiYvq5EHr8w+qs9YbmNvgAAAAAAAAAAQNKdva4q5D1vcJ8+csUDvzhgkbzswSg+AAAAAAAAAACayVG7rqGiuq0d+rGtpE0whputuuCTxjEAAIA/AACAP5pkiTwA1VI/PpEJPDPGf78Y1YA93+8IvQAAAAAAAAAAM889vU1GCD9ncRi9Ep1Yvz6Kgb24sKu9AAAAAAAAAADa5sA9Qk2PPlb3R74avh6/QJPGPRP9Nb4AAAAAAAAAACYjFb6KN5A+hS8GP1vFJ78V8pc9Qr6mPgAAAAAAAAAAZp6PO3ZHM7z3jYE7QdQXPMBRlz1JwgK9AACAPwAAgD8a/Qq9hTjNu1h2ZzxlS6U8fw0svRu8iz0AAIA/AACAPzMfkrxX+W0/0jJFve1Cfb+Djbg8KNVNvQAAAAAAAAAAGgsxvU/LTrwhT4w+p89nvv2UJLsiwCm+AACAPwAAgD8AOI28+MKeP+jZib30xiG/xsQhPfP3OT0AAAAAAAAAAM2W0b3bePg9GrhbPonsAb9Pd9y9V1zEPQAAAAAAAAAAmhUhPBZohD/Q+Qk9DdRuv2REkT2+yGc8AAAAAAAAAADmLnG9tgFEPYfohT5SXNC+adxSPDmsJT4AAAAAAAAAAMZSZD5C/nU/nptvPdRlOb/e7BM/QHo3vgAAAAAAAAAAs7sqvSHXbD4E87i82QsUv/m25r2i3XS7AAAAAAAAAADGh5E+1vGGP9GYtj1yNQ2/heg2P8BCv70AAAAAAAAAAJqZK7kU9oy6MmkZM31gejCBFie7OBa2swAAgD8AAIA/mue2vM6o3rzqvSY9hF0oPZYqQTw4TKi8AACAPwAAgD+ahYk7qUkOvFUCpzo6Rbo8bFklPeb0K7kAAIA/AACAPzOHtzvhKIm6MzQevJTbvjiNMSI6lNUruAAAgD8AAIA/mpt/vbxhPT2NIl8+QwzBviitmr1TUNQ9AAAAAAAAAACa8K684UilupwUObZQ7IGxKRaNOHb1YzUAAIA/AACAP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVqAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSyCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYi4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00024320000000011, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOey+Y/gLdECUhpRSlIwBbJRLyowBdJRHQPPORH9LpRp1fZQoaAZoCWgPQwiJ7e4BeldzQJSGlFKUaBVLu2gWR0DzzkUjIq9XdX2UKGgGaAloD0MIEodsIB17dECUhpRSlGgVS6loFkdA885GHPqs2nV9lChoBmgJaA9DCJdV2AxwRnFAlIaUUpRoFUukaBZHQPPOR0wblzV1fZQoaAZoCWgPQwjOcAM+/w9wQJSGlFKUaBVLs2gWR0DzzkdIAwPAdX2UKGgGaAloD0MIgJ9x4YBtcUCUhpRSlGgVS5NoFkdA885H/DtPYXV9lChoBmgJaA9DCAfSxaZVAnNAlIaUUpRoFUu5aBZHQPPOSLio86p1fZQoaAZoCWgPQwjT2cngqNRzQJSGlFKUaBVLwGgWR0DzzkkKkEcLdX2UKGgGaAloD0MIKETAIVQZdECUhpRSlGgVS8FoFkdA885Kk8aGYnV9lChoBmgJaA9DCCL8i6AxrXNAlIaUUpRoFUu1aBZHQPPOS0wWWQh1fZQoaAZoCWgPQwg+6NmsOrJxQJSGlFKUaBVLvGgWR0DzzkwANoaldX2UKGgGaAloD0MI8Sprm6IsckCUhpRSlGgVS81oFkdA885MNZA6dXV9lChoBmgJaA9DCJ7t0RsuxXJAlIaUUpRoFU0VAWgWR0DzzkxSUTtcdX2UKGgGaAloD0MI2SQ/4hdNcUCUhpRSlGgVS8xoFkdA885Mi5VfeHV9lChoBmgJaA9DCDf/rzpytnFAlIaUUpRoFUvQaBZHQPPOTNVNpM91fZQoaAZoCWgPQwjJVwIpsdlxQJSGlFKUaBVLkGgWR0Dzzk/C4z7/dX2UKGgGaAloD0MIVB9I3jkpc0CUhpRSlGgVS8toFkdA885Qi5VfeHV9lChoBmgJaA9DCDVCP1MvkHFAlIaUUpRoFUulaBZHQPPOULSLIgh1fZQoaAZoCWgPQwiERrBx/b9zQJSGlFKUaBVLsGgWR0DzzlFcer+6dX2UKGgGaAloD0MIZHRAEjYqcUCUhpRSlGgVS69oFkdA885SHP3SKHV9lChoBmgJaA9DCBgHl465Q3JAlIaUUpRoFUviaBZHQPPOUmrNnoR1fZQoaAZoCWgPQwhUHt0Ii0BzQJSGlFKUaBVLuGgWR0DzzlKsWfsedX2UKGgGaAloD0MIwMx38JPQckCUhpRSlGgVS8ZoFkdA885Uk8mrsHV9lChoBmgJaA9DCJliDoKO63NAlIaUUpRoFUvEaBZHQPPOVJPGhmJ1fZQoaAZoCWgPQwhd3hyulTBzQJSGlFKUaBVL0GgWR0DzzlYU0elsdX2UKGgGaAloD0MIJO1GHzNcdECUhpRSlGgVS75oFkdA885WOajN6nV9lChoBmgJaA9DCET7WMEvOnNAlIaUUpRoFUvtaBZHQPPOVnLkjop1fZQoaAZoCWgPQwjZsKayqPFvQJSGlFKUaBVLvWgWR0DzzlawcYIjdX2UKGgGaAloD0MIjup0IGsFcUCUhpRSlGgVS7ZoFkdA885XQ+6iCnV9lChoBmgJaA9DCIOJP4o6FHNAlIaUUpRoFUuzaBZHQPPOV1x6v7p1fZQoaAZoCWgPQwhLOV/sfeJxQJSGlFKUaBVLv2gWR0DzzleqTbFkdX2UKGgGaAloD0MIeEXwv5Vsc0CUhpRSlGgVS9NoFkdA885Xqk2xZHV9lChoBmgJaA9DCL3l6scmNHBAlIaUUpRoFUuvaBZHQPPOWKxcE/11fZQoaAZoCWgPQwikqgmi7gpyQJSGlFKUaBVLlWgWR0Dzzlj+S8radX2UKGgGaAloD0MIsTIa+bzMcUCUhpRSlGgVS7NoFkdA885aNY0VJ3V9lChoBmgJaA9DCKK0N/iCg3NAlIaUUpRoFUu2aBZHQPPOWn9Oymh1fZQoaAZoCWgPQwh2pWWknn1zQJSGlFKUaBVL8GgWR0Dzzlqf7aZhdX2UKGgGaAloD0MIa378pYUNc0CUhpRSlGgVS95oFkdA885cTiS7oXV9lChoBmgJaA9DCJ1LcVVZEHRAlIaUUpRoFUvRaBZHQPPOXgRoRI11fZQoaAZoCWgPQwg9YB4yJXtzQJSGlFKUaBVLsWgWR0Dzzl64m1IAdX2UKGgGaAloD0MIgzC3ezk1ckCUhpRSlGgVS7loFkdA885e6ciGFnV9lChoBmgJaA9DCHqlLENc1nJAlIaUUpRoFUu3aBZHQPPOX6pOvdN1fZQoaAZoCWgPQwgQk3Ahjw5zQJSGlFKUaBVLuWgWR0DzzmBBwMpgdX2UKGgGaAloD0MIHmyx2ycbckCUhpRSlGgVS85oFkdA885gk8mrsHV9lChoBmgJaA9DCKIOK9wyanNAlIaUUpRoFUu/aBZHQPPOYLikwex1fZQoaAZoCWgPQwgAVdy4he5xQJSGlFKUaBVLm2gWR0DzzmE7tiQUdX2UKGgGaAloD0MI4JwRpX0RcUCUhpRSlGgVS8NoFkdA885hohpxm3V9lChoBmgJaA9DCAxWnGptnnNAlIaUUpRoFUvxaBZHQPPOYmaZx711fZQoaAZoCWgPQwhYcD/ggeRxQJSGlFKUaBVLqWgWR0DzzmQQtSQ6dX2UKGgGaAloD0MIYfw07o1JcUCUhpRSlGgVS6VoFkdA885kMXrMT3V9lChoBmgJaA9DCDSGOUFbbHFAlIaUUpRoFUuXaBZHQPPOZKAVfu11fZQoaAZoCWgPQwhIiPIFrVVwQJSGlFKUaBVLt2gWR0DzzmTRGc4HdX2UKGgGaAloD0MI+vAsQcb6ckCUhpRSlGgVS69oFkdA885lBlYlp3V9lChoBmgJaA9DCKlr7X1qPnJAlIaUUpRoFUvAaBZHQPPOZQJBw/B1fZQoaAZoCWgPQwhljA+zF2tzQJSGlFKUaBVL1mgWR0DzzmaTxoZidX2UKGgGaAloD0MIf6MdNzwxcUCUhpRSlGgVS6xoFkdA885myQcPv3V9lChoBmgJaA9DCFCKVu4FmERAlIaUUpRoFUtjaBZHQPPOZwZbY9R1fZQoaAZoCWgPQwjaOGItvrxuQJSGlFKUaBVLomgWR0Dzzmc7sv7FdX2UKGgGaAloD0MI/fm2YOlBcECUhpRSlGgVS6loFkdA885oj4593XV9lChoBmgJaA9DCDEJF/KI829AlIaUUpRoFUupaBZHQPPOaS9tdiV1fZQoaAZoCWgPQwjX3qeqkF5yQJSGlFKUaBVLu2gWR0Dzzmn8PnSwdX2UKGgGaAloD0MItMpMaf3zcUCUhpRSlGgVS7hoFkdA885qm/vfCXV9lChoBmgJaA9DCEHTEivjl3JAlIaUUpRoFUu5aBZHQPPOaxbaAWl1fZQoaAZoCWgPQwjG+ZtQiDFzQJSGlFKUaBVLu2gWR0DzzmtUSIxhdX2UKGgGaAloD0MIv2N47OdvckCUhpRSlGgVS6loFkdA885sh3iaRnV9lChoBmgJaA9DCH8SnzuBDHNAlIaUUpRoFUuvaBZHQPPObMTtb9t1fZQoaAZoCWgPQwhffTz03ShyQJSGlFKUaBVLyWgWR0Dzzm3TP0I1dX2UKGgGaAloD0MIWWyTiobYcUCUhpRSlGgVS99oFkdA885t79AHFHV9lChoBmgJaA9DCOG3IcbrgnNAlIaUUpRoFUvKaBZHQPPObkoNNJx1fZQoaAZoCWgPQwgydsJLsORxQJSGlFKUaBVLy2gWR0DzznAdAxBWdX2UKGgGaAloD0MIXkvIB33cckCUhpRSlGgVS6FoFkdA885ztqHoHXV9lChoBmgJaA9DCES+S6kL8nJAlIaUUpRoFUvEaBZHQPPOdClJpWV1fZQoaAZoCWgPQwirQZjbfZVyQJSGlFKUaBVLyGgWR0DzznRzBhx6dX2UKGgGaAloD0MIQnkfR3MGckCUhpRSlGgVS8BoFkdA8850cwUQCnV9lChoBmgJaA9DCEXZW8p5mm9AlIaUUpRoFUu8aBZHQPPOdI+t8u11fZQoaAZoCWgPQwiF7LyNTTByQJSGlFKUaBVLnWgWR0DzznUfDDTCdX2UKGgGaAloD0MIGF3eHO6Qc0CUhpRSlGgVS7poFkdA8851WETQFHV9lChoBmgJaA9DCMCuJk+ZpXFAlIaUUpRoFUvDaBZHQPPOdcLDye91fZQoaAZoCWgPQwhVih2Nw19wQJSGlFKUaBVL4WgWR0DzznZy/9HddX2UKGgGaAloD0MIxv1HpsNgc0CUhpRSlGgVS8loFkdA8853Q+UyHnV9lChoBmgJaA9DCBXEQNf+E3NAlIaUUpRoFUu5aBZHQPPOeBz+3ph1fZQoaAZoCWgPQwhxj6UPXTxyQJSGlFKUaBVLo2gWR0Dzznhmm+CcdX2UKGgGaAloD0MIWivaHKfDc0CUhpRSlGgVS7poFkdA88540Tg2qHV9lChoBmgJaA9DCAW/DTFefUBAlIaUUpRoFUtxaBZHQPPOeOWRigF1fZQoaAZoCWgPQwi3Q8NiVBlyQJSGlFKUaBVLqWgWR0DzznlgkTpQdX2UKGgGaAloD0MILNZwkXtJc0CUhpRSlGgVS8hoFkdA8855/BrN4nV9lChoBmgJaA9DCHB6F++H7nFAlIaUUpRoFUu3aBZHQPPOeoNmUW51fZQoaAZoCWgPQwhyGMxfobhxQJSGlFKUaBVLzWgWR0DzznrJBw+/dX2UKGgGaAloD0MI7+TTY1sGdECUhpRSlGgVS85oFkdA88566cZtN3V9lChoBmgJaA9DCDdPdchNQ3FAlIaUUpRoFUuuaBZHQPPOe5nwob51fZQoaAZoCWgPQwj9h/Tb1/tyQJSGlFKUaBVLqGgWR0DzznxmtyPudX2UKGgGaAloD0MINsr6zUS8ckCUhpRSlGgVS7NoFkdA88582UjcEnV9lChoBmgJaA9DCHYWvVPBpHNAlIaUUpRoFU0PAWgWR0Dzzn0nPE88dX2UKGgGaAloD0MI4dBbPPyCckCUhpRSlGgVS6poFkdA8859R+F10XV9lChoBmgJaA9DCAuW6gJeCXRAlIaUUpRoFUvbaBZHQPPOfaY1He91fZQoaAZoCWgPQwgaNsr6jZ1wQJSGlFKUaBVLnGgWR0Dzzn5SPU8WdX2UKGgGaAloD0MIeNMtO0QTcUCUhpRSlGgVS91oFkdA885/uq//N3V9lChoBmgJaA9DCCjTaHLxw3NAlIaUUpRoFUvFaBZHQPPOf9MmF8J1fZQoaAZoCWgPQwheTDPdKzhwQJSGlFKUaBVLtGgWR0DzzoC0hvBKdX2UKGgGaAloD0MIzzC1pU5oc0CUhpRSlGgVS8RoFkdA886BTBRAKXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 14652, "n_steps": 1024, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGBMOlwhISFBSVxDdXJzIGh1Z2dpbmdmYWNlIFJMXFB5dGhvbl9lbnZcdmVudlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.19041-SP0 10.0.19041", "Python": "3.7.0", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c94120871898543057495b1b161d302f71cb4c2be73f415e0b99e31f9f24925
3
+ size 147909
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x00000190DFC15BF8>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x00000190DFC15C80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x00000190DFC15D08>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x00000190DFC15D90>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x00000190DFC15E18>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x00000190DFC15EA0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x00000190DFC15F28>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x00000190DFC18048>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000190DFC180D0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x00000190DFC18158>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x00000190DFC181E0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x00000190DFC12240>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 32,
45
+ "num_timesteps": 120029184,
46
+ "_total_timesteps": 120000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673361616524306000,
51
+ "learning_rate": 3e-05,
52
+ "tensorboard_log": ".\\Log",
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gASVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGBMOlwhISFBSVxDdXJzIGh1Z2dpbmdmYWNlIFJMXFB5dGhvbl9lbnZcdmVudlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+/3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVjQQAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSyBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIABAAAs24fPaqfEj5iEEG+UVMEv4SDZD0SeUq+AAAAAAAAAABmdiM77FPtu0mqQzvDO4I8nehdPR2RW70AAIA/AACAP2YeRbsI9/a8a7mHvh548Du724g9Gj2ZPQAAgD8AAIA/AD5rPB9V8LnFM0818wEnMeDWLjtGJk60AACAPwAAgD/NzIO4UpfTuzzwNTwXQpg8TXJIvXbyfz0AAIA/AACAPwCsVLzSFca79/MnvSmuFjyFTQs9DZQ/vQAAgD8AAIA/mg2pvGyJg7v9WpI9DZW9PAKDsLw6aqA9AACAPwAAgD9ml628KZBHuo/ZqLWKMjixrcInOgbX0TQAAIA/AACAP0AEBj60aiw+ciiYvq5EHr8w+qs9YbmNvgAAAAAAAAAAQNKdva4q5D1vcJ8+csUDvzhgkbzswSg+AAAAAAAAAACayVG7rqGiuq0d+rGtpE0whputuuCTxjEAAIA/AACAP5pkiTwA1VI/PpEJPDPGf78Y1YA93+8IvQAAAAAAAAAAM889vU1GCD9ncRi9Ep1Yvz6Kgb24sKu9AAAAAAAAAADa5sA9Qk2PPlb3R74avh6/QJPGPRP9Nb4AAAAAAAAAACYjFb6KN5A+hS8GP1vFJ78V8pc9Qr6mPgAAAAAAAAAAZp6PO3ZHM7z3jYE7QdQXPMBRlz1JwgK9AACAPwAAgD8a/Qq9hTjNu1h2ZzxlS6U8fw0svRu8iz0AAIA/AACAPzMfkrxX+W0/0jJFve1Cfb+Djbg8KNVNvQAAAAAAAAAAGgsxvU/LTrwhT4w+p89nvv2UJLsiwCm+AACAPwAAgD8AOI28+MKeP+jZib30xiG/xsQhPfP3OT0AAAAAAAAAAM2W0b3bePg9GrhbPonsAb9Pd9y9V1zEPQAAAAAAAAAAmhUhPBZohD/Q+Qk9DdRuv2REkT2+yGc8AAAAAAAAAADmLnG9tgFEPYfohT5SXNC+adxSPDmsJT4AAAAAAAAAAMZSZD5C/nU/nptvPdRlOb/e7BM/QHo3vgAAAAAAAAAAs7sqvSHXbD4E87i82QsUv/m25r2i3XS7AAAAAAAAAADGh5E+1vGGP9GYtj1yNQ2/heg2P8BCv70AAAAAAAAAAJqZK7kU9oy6MmkZM31gejCBFie7OBa2swAAgD8AAIA/mue2vM6o3rzqvSY9hF0oPZYqQTw4TKi8AACAPwAAgD+ahYk7qUkOvFUCpzo6Rbo8bFklPeb0K7kAAIA/AACAPzOHtzvhKIm6MzQevJTbvjiNMSI6lNUruAAAgD8AAIA/mpt/vbxhPT2NIl8+QwzBviitmr1TUNQ9AAAAAAAAAACa8K684UilupwUObZQ7IGxKRaNOHb1YzUAAIA/AACAP5R0lGIu"
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gASVqAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSyCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYi4="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.00024320000000011,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gASVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOey+Y/gLdECUhpRSlIwBbJRLyowBdJRHQPPORH9LpRp1fZQoaAZoCWgPQwiJ7e4BeldzQJSGlFKUaBVLu2gWR0DzzkUjIq9XdX2UKGgGaAloD0MIEodsIB17dECUhpRSlGgVS6loFkdA885GHPqs2nV9lChoBmgJaA9DCJdV2AxwRnFAlIaUUpRoFUukaBZHQPPOR0wblzV1fZQoaAZoCWgPQwjOcAM+/w9wQJSGlFKUaBVLs2gWR0DzzkdIAwPAdX2UKGgGaAloD0MIgJ9x4YBtcUCUhpRSlGgVS5NoFkdA885H/DtPYXV9lChoBmgJaA9DCAfSxaZVAnNAlIaUUpRoFUu5aBZHQPPOSLio86p1fZQoaAZoCWgPQwjT2cngqNRzQJSGlFKUaBVLwGgWR0DzzkkKkEcLdX2UKGgGaAloD0MIKETAIVQZdECUhpRSlGgVS8FoFkdA885Kk8aGYnV9lChoBmgJaA9DCCL8i6AxrXNAlIaUUpRoFUu1aBZHQPPOS0wWWQh1fZQoaAZoCWgPQwg+6NmsOrJxQJSGlFKUaBVLvGgWR0DzzkwANoaldX2UKGgGaAloD0MI8Sprm6IsckCUhpRSlGgVS81oFkdA885MNZA6dXV9lChoBmgJaA9DCJ7t0RsuxXJAlIaUUpRoFU0VAWgWR0DzzkxSUTtcdX2UKGgGaAloD0MI2SQ/4hdNcUCUhpRSlGgVS8xoFkdA885Mi5VfeHV9lChoBmgJaA9DCDf/rzpytnFAlIaUUpRoFUvQaBZHQPPOTNVNpM91fZQoaAZoCWgPQwjJVwIpsdlxQJSGlFKUaBVLkGgWR0Dzzk/C4z7/dX2UKGgGaAloD0MIVB9I3jkpc0CUhpRSlGgVS8toFkdA885Qi5VfeHV9lChoBmgJaA9DCDVCP1MvkHFAlIaUUpRoFUulaBZHQPPOULSLIgh1fZQoaAZoCWgPQwiERrBx/b9zQJSGlFKUaBVLsGgWR0DzzlFcer+6dX2UKGgGaAloD0MIZHRAEjYqcUCUhpRSlGgVS69oFkdA885SHP3SKHV9lChoBmgJaA9DCBgHl465Q3JAlIaUUpRoFUviaBZHQPPOUmrNnoR1fZQoaAZoCWgPQwhUHt0Ii0BzQJSGlFKUaBVLuGgWR0DzzlKsWfsedX2UKGgGaAloD0MIwMx38JPQckCUhpRSlGgVS8ZoFkdA885Uk8mrsHV9lChoBmgJaA9DCJliDoKO63NAlIaUUpRoFUvEaBZHQPPOVJPGhmJ1fZQoaAZoCWgPQwhd3hyulTBzQJSGlFKUaBVL0GgWR0DzzlYU0elsdX2UKGgGaAloD0MIJO1GHzNcdECUhpRSlGgVS75oFkdA885WOajN6nV9lChoBmgJaA9DCET7WMEvOnNAlIaUUpRoFUvtaBZHQPPOVnLkjop1fZQoaAZoCWgPQwjZsKayqPFvQJSGlFKUaBVLvWgWR0DzzlawcYIjdX2UKGgGaAloD0MIjup0IGsFcUCUhpRSlGgVS7ZoFkdA885XQ+6iCnV9lChoBmgJaA9DCIOJP4o6FHNAlIaUUpRoFUuzaBZHQPPOV1x6v7p1fZQoaAZoCWgPQwhLOV/sfeJxQJSGlFKUaBVLv2gWR0DzzleqTbFkdX2UKGgGaAloD0MIeEXwv5Vsc0CUhpRSlGgVS9NoFkdA885Xqk2xZHV9lChoBmgJaA9DCL3l6scmNHBAlIaUUpRoFUuvaBZHQPPOWKxcE/11fZQoaAZoCWgPQwikqgmi7gpyQJSGlFKUaBVLlWgWR0Dzzlj+S8radX2UKGgGaAloD0MIsTIa+bzMcUCUhpRSlGgVS7NoFkdA885aNY0VJ3V9lChoBmgJaA9DCKK0N/iCg3NAlIaUUpRoFUu2aBZHQPPOWn9Oymh1fZQoaAZoCWgPQwh2pWWknn1zQJSGlFKUaBVL8GgWR0Dzzlqf7aZhdX2UKGgGaAloD0MIa378pYUNc0CUhpRSlGgVS95oFkdA885cTiS7oXV9lChoBmgJaA9DCJ1LcVVZEHRAlIaUUpRoFUvRaBZHQPPOXgRoRI11fZQoaAZoCWgPQwg9YB4yJXtzQJSGlFKUaBVLsWgWR0Dzzl64m1IAdX2UKGgGaAloD0MIgzC3ezk1ckCUhpRSlGgVS7loFkdA885e6ciGFnV9lChoBmgJaA9DCHqlLENc1nJAlIaUUpRoFUu3aBZHQPPOX6pOvdN1fZQoaAZoCWgPQwgQk3Ahjw5zQJSGlFKUaBVLuWgWR0DzzmBBwMpgdX2UKGgGaAloD0MIHmyx2ycbckCUhpRSlGgVS85oFkdA885gk8mrsHV9lChoBmgJaA9DCKIOK9wyanNAlIaUUpRoFUu/aBZHQPPOYLikwex1fZQoaAZoCWgPQwgAVdy4he5xQJSGlFKUaBVLm2gWR0DzzmE7tiQUdX2UKGgGaAloD0MI4JwRpX0RcUCUhpRSlGgVS8NoFkdA885hohpxm3V9lChoBmgJaA9DCAxWnGptnnNAlIaUUpRoFUvxaBZHQPPOYmaZx711fZQoaAZoCWgPQwhYcD/ggeRxQJSGlFKUaBVLqWgWR0DzzmQQtSQ6dX2UKGgGaAloD0MIYfw07o1JcUCUhpRSlGgVS6VoFkdA885kMXrMT3V9lChoBmgJaA9DCDSGOUFbbHFAlIaUUpRoFUuXaBZHQPPOZKAVfu11fZQoaAZoCWgPQwhIiPIFrVVwQJSGlFKUaBVLt2gWR0DzzmTRGc4HdX2UKGgGaAloD0MI+vAsQcb6ckCUhpRSlGgVS69oFkdA885lBlYlp3V9lChoBmgJaA9DCKlr7X1qPnJAlIaUUpRoFUvAaBZHQPPOZQJBw/B1fZQoaAZoCWgPQwhljA+zF2tzQJSGlFKUaBVL1mgWR0DzzmaTxoZidX2UKGgGaAloD0MIf6MdNzwxcUCUhpRSlGgVS6xoFkdA885myQcPv3V9lChoBmgJaA9DCFCKVu4FmERAlIaUUpRoFUtjaBZHQPPOZwZbY9R1fZQoaAZoCWgPQwjaOGItvrxuQJSGlFKUaBVLomgWR0Dzzmc7sv7FdX2UKGgGaAloD0MI/fm2YOlBcECUhpRSlGgVS6loFkdA885oj4593XV9lChoBmgJaA9DCDEJF/KI829AlIaUUpRoFUupaBZHQPPOaS9tdiV1fZQoaAZoCWgPQwjX3qeqkF5yQJSGlFKUaBVLu2gWR0Dzzmn8PnSwdX2UKGgGaAloD0MItMpMaf3zcUCUhpRSlGgVS7hoFkdA885qm/vfCXV9lChoBmgJaA9DCEHTEivjl3JAlIaUUpRoFUu5aBZHQPPOaxbaAWl1fZQoaAZoCWgPQwjG+ZtQiDFzQJSGlFKUaBVLu2gWR0DzzmtUSIxhdX2UKGgGaAloD0MIv2N47OdvckCUhpRSlGgVS6loFkdA885sh3iaRnV9lChoBmgJaA9DCH8SnzuBDHNAlIaUUpRoFUuvaBZHQPPObMTtb9t1fZQoaAZoCWgPQwhffTz03ShyQJSGlFKUaBVLyWgWR0Dzzm3TP0I1dX2UKGgGaAloD0MIWWyTiobYcUCUhpRSlGgVS99oFkdA885t79AHFHV9lChoBmgJaA9DCOG3IcbrgnNAlIaUUpRoFUvKaBZHQPPObkoNNJx1fZQoaAZoCWgPQwgydsJLsORxQJSGlFKUaBVLy2gWR0DzznAdAxBWdX2UKGgGaAloD0MIXkvIB33cckCUhpRSlGgVS6FoFkdA885ztqHoHXV9lChoBmgJaA9DCES+S6kL8nJAlIaUUpRoFUvEaBZHQPPOdClJpWV1fZQoaAZoCWgPQwirQZjbfZVyQJSGlFKUaBVLyGgWR0DzznRzBhx6dX2UKGgGaAloD0MIQnkfR3MGckCUhpRSlGgVS8BoFkdA8850cwUQCnV9lChoBmgJaA9DCEXZW8p5mm9AlIaUUpRoFUu8aBZHQPPOdI+t8u11fZQoaAZoCWgPQwiF7LyNTTByQJSGlFKUaBVLnWgWR0DzznUfDDTCdX2UKGgGaAloD0MIGF3eHO6Qc0CUhpRSlGgVS7poFkdA8851WETQFHV9lChoBmgJaA9DCMCuJk+ZpXFAlIaUUpRoFUvDaBZHQPPOdcLDye91fZQoaAZoCWgPQwhVih2Nw19wQJSGlFKUaBVL4WgWR0DzznZy/9HddX2UKGgGaAloD0MIxv1HpsNgc0CUhpRSlGgVS8loFkdA8853Q+UyHnV9lChoBmgJaA9DCBXEQNf+E3NAlIaUUpRoFUu5aBZHQPPOeBz+3ph1fZQoaAZoCWgPQwhxj6UPXTxyQJSGlFKUaBVLo2gWR0Dzznhmm+CcdX2UKGgGaAloD0MIWivaHKfDc0CUhpRSlGgVS7poFkdA88540Tg2qHV9lChoBmgJaA9DCAW/DTFefUBAlIaUUpRoFUtxaBZHQPPOeOWRigF1fZQoaAZoCWgPQwi3Q8NiVBlyQJSGlFKUaBVLqWgWR0DzznlgkTpQdX2UKGgGaAloD0MILNZwkXtJc0CUhpRSlGgVS8hoFkdA8855/BrN4nV9lChoBmgJaA9DCHB6F++H7nFAlIaUUpRoFUu3aBZHQPPOeoNmUW51fZQoaAZoCWgPQwhyGMxfobhxQJSGlFKUaBVLzWgWR0DzznrJBw+/dX2UKGgGaAloD0MI7+TTY1sGdECUhpRSlGgVS85oFkdA88566cZtN3V9lChoBmgJaA9DCDdPdchNQ3FAlIaUUpRoFUuuaBZHQPPOe5nwob51fZQoaAZoCWgPQwj9h/Tb1/tyQJSGlFKUaBVLqGgWR0DzznxmtyPudX2UKGgGaAloD0MINsr6zUS8ckCUhpRSlGgVS7NoFkdA88582UjcEnV9lChoBmgJaA9DCHYWvVPBpHNAlIaUUpRoFU0PAWgWR0Dzzn0nPE88dX2UKGgGaAloD0MI4dBbPPyCckCUhpRSlGgVS6poFkdA8859R+F10XV9lChoBmgJaA9DCAuW6gJeCXRAlIaUUpRoFUvbaBZHQPPOfaY1He91fZQoaAZoCWgPQwgaNsr6jZ1wQJSGlFKUaBVLnGgWR0Dzzn5SPU8WdX2UKGgGaAloD0MIeNMtO0QTcUCUhpRSlGgVS91oFkdA885/uq//N3V9lChoBmgJaA9DCCjTaHLxw3NAlIaUUpRoFUvFaBZHQPPOf9MmF8J1fZQoaAZoCWgPQwheTDPdKzhwQJSGlFKUaBVLtGgWR0DzzoC0hvBKdX2UKGgGaAloD0MIzzC1pU5oc0CUhpRSlGgVS8RoFkdA886BTBRAKXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 14652,
79
+ "n_steps": 1024,
80
+ "gamma": 0.9999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gASVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGBMOlwhISFBSVxDdXJzIGh1Z2dpbmdmYWNlIFJMXFB5dGhvbl9lbnZcdmVudlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4296348f808b227b81236f9fb9484ed4453a96890ec9903d468677d8cc084b3f
3
+ size 88057
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:878c9b9815f467f7b8604b141d9b187866ce32ce0baecbb3640b37c0df4985be
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Windows-10-10.0.19041-SP0 10.0.19041
2
+ Python: 3.7.0
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.1+cu117
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (181 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 294.15540623250763, "std_reward": 21.422625056326236, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-11T18:16:17.892594"}