ArthurinRUC
commited on
Commit
·
8e14962
1
Parent(s):
e01a793
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 238.34 +/- 23.76
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7858c0a790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7858c0a820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7858c0a8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7858c0a940>", "_build": "<function ActorCriticPolicy._build at 0x7f7858c0a9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7858c0aa60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7858c0aaf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7858c0ab80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7858c0ac10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7858c0aca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7858c0ad30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7858c0b0f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671079351850506072, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPoKLD5toUI/cM9WvVCcqL5ENnQ95gQAPAAAAAAAAAAA5ld/PSmUc7oqno65+sxstHHsJrselaY4AACAPwAAgD8z9EC9j14DuhrTd7seVoU4NMs9u+UJyTkAAIA/AACAP2bUsbx7FpC6ZSHctvXIoLFsTQG6Vbf+NQAAgD8AAIA/TS6CPfYoX7r0fo66zU5/tSJ1oLteqKc5AACAPwAAgD+N7J+94VKfP4NEAr7yTZu+KFwMvjt/Lr0AAAAAAAAAAJpYFD2up4G6eiF1ufcJUrR103C7ahSPOAAAgD8AAIA/mjcCPCkkd7oeQyi4xI81ssoVfrs67kI3AACAPwAAgD+aIsG8XINqugCQnroRbn009elMuzeItjkAAIA/AACAP1tph77ngUc/7oZIPoR5ib7qQ2y94XghPgAAAAAAAAAAgGMvvZyROT9qAJI6lVugvkmhPjuv3IQ9AAAAAAAAAABQKHi+sw4AP1MVbT7tcYG+QwePO8iTFz4AAAAAAAAAACaNsz2PagO6QvrnOs0nb7Q3zSa78bIGugAAgD8AAAAAAGJkPXsqnbpyb5466/l7NT9fgrn7eLa5AACAPwAAgD/aaIy9SE+VulAxfDvuyGA4FkqnuWZuG7oAAIA/AACAP2Z2SzzhZJW6o8X4ureugLSgnde6QrfzMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3A4Ni9GbZUCUhpRSlIwBbJRN6AOMAXSUR0Ch6FcFpwjudX2UKGgGaAloD0MI1Em2uhwsZkCUhpRSlGgVTegDaBZHQKHo+5ZKWcB1fZQoaAZoCWgPQwjk3CbcK8VnQJSGlFKUaBVN6ANoFkdAoexf8baRIXV9lChoBmgJaA9DCPs/h/nyfElAlIaUUpRoFU0FAWgWR0Ch7bxoRIz4dX2UKGgGaAloD0MIOJ86VilRYkCUhpRSlGgVTegDaBZHQKHw1nmq5sl1fZQoaAZoCWgPQwh3LLZJRVBkQJSGlFKUaBVN6ANoFkdAogqVj5Kvm3V9lChoBmgJaA9DCFotsMdEamZAlIaUUpRoFU3oA2gWR0CiCp4Kx9ofdX2UKGgGaAloD0MIopkn15TtYUCUhpRSlGgVTegDaBZHQKINd2zOX3R1fZQoaAZoCWgPQwjt1FxusPBgQJSGlFKUaBVN6ANoFkdAog39e4TbnHV9lChoBmgJaA9DCKt3uB0aFWFAlIaUUpRoFU3oA2gWR0CiDuBKcurZdX2UKGgGaAloD0MINrHAV/TVZECUhpRSlGgVTegDaBZHQKIPkZUkv9N1fZQoaAZoCWgPQwhDOGbZE/ZiQJSGlFKUaBVN6ANoFkdAog/46dUbUHV9lChoBmgJaA9DCABXsmOjHWZAlIaUUpRoFU3oA2gWR0CiEKksjFAFdX2UKGgGaAloD0MImpfD7jssZUCUhpRSlGgVTegDaBZHQKISmMo+fRN1fZQoaAZoCWgPQwgw16IFaB1kQJSGlFKUaBVN6ANoFkdAohOai7Ciy3V9lChoBmgJaA9DCFwAGqVL/mJAlIaUUpRoFU3oA2gWR0CiFOJzDGcXdX2UKGgGaAloD0MIMXpuoStLZUCUhpRSlGgVTegDaBZHQKIViVdHDrJ1fZQoaAZoCWgPQwhkrgyqjcZiQJSGlFKUaBVN6ANoFkdAohZEYwZflnV9lChoBmgJaA9DCNrjhXR4zVxAlIaUUpRoFU3oA2gWR0CiGgHVwxWUdX2UKGgGaAloD0MIIbByaJE/Y0CUhpRSlGgVTegDaBZHQKIbh2IwdsB1fZQoaAZoCWgPQwik/+VatMBkQJSGlFKUaBVN6ANoFkdAoh66piqhlHV9lChoBmgJaA9DCDtREhJpxG5AlIaUUpRoFU2NAmgWR0CiNWAzxgAqdX2UKGgGaAloD0MInigJiTSpYUCUhpRSlGgVTegDaBZHQKI150nPVut1fZQoaAZoCWgPQwiDaRg+IohhQJSGlFKUaBVN6ANoFkdAojXvio86m3V9lChoBmgJaA9DCInrGFdcEGdAlIaUUpRoFU3oA2gWR0CiOHo4dZJTdX2UKGgGaAloD0MIucZnsv/jZ0CUhpRSlGgVTegDaBZHQKI49xnWatt1fZQoaAZoCWgPQwgVArnEkR9jQJSGlFKUaBVN6ANoFkdAojm+9YfW+XV9lChoBmgJaA9DCI1feCXJzWVAlIaUUpRoFU3oA2gWR0CiOlNp/PPcdX2UKGgGaAloD0MIRUYHJGEeZUCUhpRSlGgVTegDaBZHQKI6rEUCaJB1fZQoaAZoCWgPQwjghEIEnGJjQJSGlFKUaBVN6ANoFkdAojtLZOBUaXV9lChoBmgJaA9DCL72zJKA42VAlIaUUpRoFU3oA2gWR0CiPQ7U5MlDdX2UKGgGaAloD0MIRDF5A8z1X0CUhpRSlGgVTegDaBZHQKI99bsWweN1fZQoaAZoCWgPQwgROBJoMP1hQJSGlFKUaBVN6ANoFkdAoj+ttuUD+3V9lChoBmgJaA9DCItPATCeG2JAlIaUUpRoFU3oA2gWR0CiQHUWEbo9dX2UKGgGaAloD0MIqBq9GiAWYkCUhpRSlGgVTegDaBZHQKJEMhLXcxl1fZQoaAZoCWgPQwjDgCVXMeFmQJSGlFKUaBVN6ANoFkdAokWXSc9W63V9lChoBmgJaA9DCGlwW1v4+WBAlIaUUpRoFU3oA2gWR0CiSLbfHggpdX2UKGgGaAloD0MIyT7IsmD4cECUhpRSlGgVTdUCaBZHQKJREBT4tYl1fZQoaAZoCWgPQwg1mlyMgcxrQJSGlFKUaBVN+QJoFkdAolM8euFHrnV9lChoBmgJaA9DCAiqRq8GoG9AlIaUUpRoFU22AWgWR0CiU0W+wkgPdX2UKGgGaAloD0MIBtodUgwJX0CUhpRSlGgVTegDaBZHQKJeF8l5WzZ1fZQoaAZoCWgPQwiAYI4eP9piQJSGlFKUaBVN6ANoFkdAol6GAy2x6nV9lChoBmgJaA9DCJXTnpJztV5AlIaUUpRoFU3oA2gWR0CiXo1sDW9UdX2UKGgGaAloD0MImL9C5spkZUCUhpRSlGgVTegDaBZHQKJgluKoAGV1fZQoaAZoCWgPQwjwGB772UdlQJSGlFKUaBVN6ANoFkdAomD5t3wCsHV9lChoBmgJaA9DCGNCzCVVh2VAlIaUUpRoFU3oA2gWR0CiYZSE12q2dX2UKGgGaAloD0MIqtOBrKdkYkCUhpRSlGgVTegDaBZHQKJiG1YQrc11fZQoaAZoCWgPQwgnFviKbtZlQJSGlFKUaBVN6ANoFkdAomTQlhPTHHV9lChoBmgJaA9DCO87hsd+JHBAlIaUUpRoFU2YAWgWR0CiZcX1anrIdX2UKGgGaAloD0MIlIWvr/WiYUCUhpRSlGgVTegDaBZHQKJl1UrCm/F1fZQoaAZoCWgPQwjMe5xpQvBkQJSGlFKUaBVN6ANoFkdAomeRJGvwE3V9lChoBmgJaA9DCMo0mlyMgGBAlIaUUpRoFU3oA2gWR0CiaE1f/m1ZdX2UKGgGaAloD0MI74y2KomSQ0CUhpRSlGgVS+5oFkdAomtlp9JBgXV9lChoBmgJaA9DCHcstknFl2FAlIaUUpRoFU3oA2gWR0CibUfOlfqpdX2UKGgGaAloD0MIAmcpWU6jZ0CUhpRSlGgVTegDaBZHQKJwRM6BAfN1fZQoaAZoCWgPQwgMrrmj/ytvQJSGlFKUaBVNhgFoFkdAonF3J3gUDnV9lChoBmgJaA9DCCdKQiJt2zlAlIaUUpRoFUv4aBZHQKJ5tojfNzN1fZQoaAZoCWgPQwg8Mlab/whkQJSGlFKUaBVN6ANoFkdAonpQ8SwnpnV9lChoBmgJaA9DCCm0rPvHlGFAlIaUUpRoFU3oA2gWR0CielrcCYCydX2UKGgGaAloD0MImdU73A4rZUCUhpRSlGgVTegDaBZHQKJ7zOJLuhN1fZQoaAZoCWgPQwgzT64pED5jQJSGlFKUaBVN6ANoFkdAooWqbrkbP3V9lChoBmgJaA9DCB5ssdtnUmZAlIaUUpRoFU3oA2gWR0CihbHJcPe6dX2UKGgGaAloD0MI4Sh5dY4nXUCUhpRSlGgVTegDaBZHQKKH5O/L1VZ1fZQoaAZoCWgPQwjDLLRzGhNjQJSGlFKUaBVN6ANoFkdAoohNe6ZpjHV9lChoBmgJaA9DCPYjRWTYPWFAlIaUUpRoFU3oA2gWR0CiiP/tpmEodX2UKGgGaAloD0MI3Lqbp7rCY0CUhpRSlGgVTegDaBZHQKKJlCJGe+V1fZQoaAZoCWgPQwgijJ/GPSlgQJSGlFKUaBVN6ANoFkdAoo3Bgy/KyXV9lChoBmgJaA9DCNs0tteChmxAlIaUUpRoFU0DA2gWR0CijrGxD9fkdX2UKGgGaAloD0MIO+ElOPWBXUCUhpRSlGgVTegDaBZHQKKP9X1anrJ1fZQoaAZoCWgPQwjC2a1lsrBjQJSGlFKUaBVN6ANoFkdAopDW1fE4vXV9lChoBmgJaA9DCGrC9pMx719AlIaUUpRoFU3oA2gWR0CilJq508vFdX2UKGgGaAloD0MI8lt0stTjZECUhpRSlGgVTegDaBZHQKKaBgaWHDd1fZQoaAZoCWgPQwhyNbIr7UNyQJSGlFKUaBVNXQFoFkdAopr0HbAUL3V9lChoBmgJaA9DCNy4xfzcv21AlIaUUpRoFU13A2gWR0CiooABLf1pdX2UKGgGaAloD0MIlBPtKqSfXkCUhpRSlGgVTegDaBZHQKKkZgRbr1N1fZQoaAZoCWgPQwgSpFLs6ONoQJSGlFKUaBVN6ANoFkdAoqT2Bg/kenV9lChoBmgJaA9DCE5HADcLamVAlIaUUpRoFU3oA2gWR0CipQB3A2ycdX2UKGgGaAloD0MIAFeyY6NSY0CUhpRSlGgVTegDaBZHQKKmyf5DZ151fZQoaAZoCWgPQwg6AyMv6/diQJSGlFKUaBVN6ANoFkdAoqbRQ1rIo3V9lChoBmgJaA9DCCmUha+v+V5AlIaUUpRoFU3oA2gWR0CisoD0+TvBdX2UKGgGaAloD0MIgXueP+0jZUCUhpRSlGgVTegDaBZHQKKy7wVj7Q91fZQoaAZoCWgPQwheTZ6yGrNkQJSGlFKUaBVN6ANoFkdAorOscS5AhXV9lChoBmgJaA9DCKDBps6jeGVAlIaUUpRoFU3oA2gWR0CitExIre67dX2UKGgGaAloD0MIEmvxKQCkcECUhpRSlGgVTZoDaBZHQKK2LlfZ26l1fZQoaAZoCWgPQwgc6ndha0pOQJSGlFKUaBVNFQFoFkdAorgqbKA8S3V9lChoBmgJaA9DCIy7QbRWCmxAlIaUUpRoFU14AWgWR0CiuOvBBRhudX2UKGgGaAloD0MIjURoBBtlYECUhpRSlGgVTegDaBZHQKK6uLWqcVh1fZQoaAZoCWgPQwitvU9VIYBiQJSGlFKUaBVN6ANoFkdAorubGo73f3V9lChoBmgJaA9DCLB1qRH6iWNAlIaUUpRoFU3oA2gWR0Civ1pHiFTOdX2UKGgGaAloD0MIilqaW2F/ckCUhpRSlGgVTeUBaBZHQKLEeAbQ1Jl1fZQoaAZoCWgPQwgzVMVU+hFgQJSGlFKUaBVN6ANoFkdAosUIkRjBmHV9lChoBmgJaA9DCN3qOel9pmNAlIaUUpRoFU3oA2gWR0Cixf1Fpfx+dX2UKGgGaAloD0MIMuNtpZeVcUCUhpRSlGgVTVgCaBZHQKLGz/yXlbN1fZQoaAZoCWgPQwhbejTVExpxQJSGlFKUaBVNtAFoFkdAosd9AmiQDHV9lChoBmgJaA9DCGiSWFJumG9AlIaUUpRoFU2kAWgWR0Cix7l5WzWxdX2UKGgGaAloD0MI0ZLH0/IVY0CUhpRSlGgVTegDaBZHQKLMWlVLi/B1fZQoaAZoCWgPQwg83XnieZ9xQJSGlFKUaBVNxgJoFkdAos3TJIUah3V9lChoBmgJaA9DCCMWMewwDmNAlIaUUpRoFU3oA2gWR0Ciznba7EpBdX2UKGgGaAloD0MIQWSRJt7WX0CUhpRSlGgVTegDaBZHQKLOgCiAUcp1fZQoaAZoCWgPQwgnhA66hKthQJSGlFKUaBVN6ANoFkdAotA6C17Y03VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72dbb5d2ac4aa46282ed7e9b29a8a9f436c2212236772425d0d741a325980787
|
3 |
+
size 147218
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7858c0a790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7858c0a820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7858c0a8b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7858c0a940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7858c0a9d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7858c0aa60>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7858c0aaf0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7858c0ab80>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7858c0ac10>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7858c0aca0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7858c0ad30>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7858c0b0f0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671079351850506072,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPoKLD5toUI/cM9WvVCcqL5ENnQ95gQAPAAAAAAAAAAA5ld/PSmUc7oqno65+sxstHHsJrselaY4AACAPwAAgD8z9EC9j14DuhrTd7seVoU4NMs9u+UJyTkAAIA/AACAP2bUsbx7FpC6ZSHctvXIoLFsTQG6Vbf+NQAAgD8AAIA/TS6CPfYoX7r0fo66zU5/tSJ1oLteqKc5AACAPwAAgD+N7J+94VKfP4NEAr7yTZu+KFwMvjt/Lr0AAAAAAAAAAJpYFD2up4G6eiF1ufcJUrR103C7ahSPOAAAgD8AAIA/mjcCPCkkd7oeQyi4xI81ssoVfrs67kI3AACAPwAAgD+aIsG8XINqugCQnroRbn009elMuzeItjkAAIA/AACAP1tph77ngUc/7oZIPoR5ib7qQ2y94XghPgAAAAAAAAAAgGMvvZyROT9qAJI6lVugvkmhPjuv3IQ9AAAAAAAAAABQKHi+sw4AP1MVbT7tcYG+QwePO8iTFz4AAAAAAAAAACaNsz2PagO6QvrnOs0nb7Q3zSa78bIGugAAgD8AAAAAAGJkPXsqnbpyb5466/l7NT9fgrn7eLa5AACAPwAAgD/aaIy9SE+VulAxfDvuyGA4FkqnuWZuG7oAAIA/AACAP2Z2SzzhZJW6o8X4ureugLSgnde6QrfzMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3A4Ni9GbZUCUhpRSlIwBbJRN6AOMAXSUR0Ch6FcFpwjudX2UKGgGaAloD0MI1Em2uhwsZkCUhpRSlGgVTegDaBZHQKHo+5ZKWcB1fZQoaAZoCWgPQwjk3CbcK8VnQJSGlFKUaBVN6ANoFkdAoexf8baRIXV9lChoBmgJaA9DCPs/h/nyfElAlIaUUpRoFU0FAWgWR0Ch7bxoRIz4dX2UKGgGaAloD0MIOJ86VilRYkCUhpRSlGgVTegDaBZHQKHw1nmq5sl1fZQoaAZoCWgPQwh3LLZJRVBkQJSGlFKUaBVN6ANoFkdAogqVj5Kvm3V9lChoBmgJaA9DCFotsMdEamZAlIaUUpRoFU3oA2gWR0CiCp4Kx9ofdX2UKGgGaAloD0MIopkn15TtYUCUhpRSlGgVTegDaBZHQKINd2zOX3R1fZQoaAZoCWgPQwjt1FxusPBgQJSGlFKUaBVN6ANoFkdAog39e4TbnHV9lChoBmgJaA9DCKt3uB0aFWFAlIaUUpRoFU3oA2gWR0CiDuBKcurZdX2UKGgGaAloD0MINrHAV/TVZECUhpRSlGgVTegDaBZHQKIPkZUkv9N1fZQoaAZoCWgPQwhDOGbZE/ZiQJSGlFKUaBVN6ANoFkdAog/46dUbUHV9lChoBmgJaA9DCABXsmOjHWZAlIaUUpRoFU3oA2gWR0CiEKksjFAFdX2UKGgGaAloD0MImpfD7jssZUCUhpRSlGgVTegDaBZHQKISmMo+fRN1fZQoaAZoCWgPQwgw16IFaB1kQJSGlFKUaBVN6ANoFkdAohOai7Ciy3V9lChoBmgJaA9DCFwAGqVL/mJAlIaUUpRoFU3oA2gWR0CiFOJzDGcXdX2UKGgGaAloD0MIMXpuoStLZUCUhpRSlGgVTegDaBZHQKIViVdHDrJ1fZQoaAZoCWgPQwhkrgyqjcZiQJSGlFKUaBVN6ANoFkdAohZEYwZflnV9lChoBmgJaA9DCNrjhXR4zVxAlIaUUpRoFU3oA2gWR0CiGgHVwxWUdX2UKGgGaAloD0MIIbByaJE/Y0CUhpRSlGgVTegDaBZHQKIbh2IwdsB1fZQoaAZoCWgPQwik/+VatMBkQJSGlFKUaBVN6ANoFkdAoh66piqhlHV9lChoBmgJaA9DCDtREhJpxG5AlIaUUpRoFU2NAmgWR0CiNWAzxgAqdX2UKGgGaAloD0MInigJiTSpYUCUhpRSlGgVTegDaBZHQKI150nPVut1fZQoaAZoCWgPQwiDaRg+IohhQJSGlFKUaBVN6ANoFkdAojXvio86m3V9lChoBmgJaA9DCInrGFdcEGdAlIaUUpRoFU3oA2gWR0CiOHo4dZJTdX2UKGgGaAloD0MIucZnsv/jZ0CUhpRSlGgVTegDaBZHQKI49xnWatt1fZQoaAZoCWgPQwgVArnEkR9jQJSGlFKUaBVN6ANoFkdAojm+9YfW+XV9lChoBmgJaA9DCI1feCXJzWVAlIaUUpRoFU3oA2gWR0CiOlNp/PPcdX2UKGgGaAloD0MIRUYHJGEeZUCUhpRSlGgVTegDaBZHQKI6rEUCaJB1fZQoaAZoCWgPQwjghEIEnGJjQJSGlFKUaBVN6ANoFkdAojtLZOBUaXV9lChoBmgJaA9DCL72zJKA42VAlIaUUpRoFU3oA2gWR0CiPQ7U5MlDdX2UKGgGaAloD0MIRDF5A8z1X0CUhpRSlGgVTegDaBZHQKI99bsWweN1fZQoaAZoCWgPQwgROBJoMP1hQJSGlFKUaBVN6ANoFkdAoj+ttuUD+3V9lChoBmgJaA9DCItPATCeG2JAlIaUUpRoFU3oA2gWR0CiQHUWEbo9dX2UKGgGaAloD0MIqBq9GiAWYkCUhpRSlGgVTegDaBZHQKJEMhLXcxl1fZQoaAZoCWgPQwjDgCVXMeFmQJSGlFKUaBVN6ANoFkdAokWXSc9W63V9lChoBmgJaA9DCGlwW1v4+WBAlIaUUpRoFU3oA2gWR0CiSLbfHggpdX2UKGgGaAloD0MIyT7IsmD4cECUhpRSlGgVTdUCaBZHQKJREBT4tYl1fZQoaAZoCWgPQwg1mlyMgcxrQJSGlFKUaBVN+QJoFkdAolM8euFHrnV9lChoBmgJaA9DCAiqRq8GoG9AlIaUUpRoFU22AWgWR0CiU0W+wkgPdX2UKGgGaAloD0MIBtodUgwJX0CUhpRSlGgVTegDaBZHQKJeF8l5WzZ1fZQoaAZoCWgPQwiAYI4eP9piQJSGlFKUaBVN6ANoFkdAol6GAy2x6nV9lChoBmgJaA9DCJXTnpJztV5AlIaUUpRoFU3oA2gWR0CiXo1sDW9UdX2UKGgGaAloD0MImL9C5spkZUCUhpRSlGgVTegDaBZHQKJgluKoAGV1fZQoaAZoCWgPQwjwGB772UdlQJSGlFKUaBVN6ANoFkdAomD5t3wCsHV9lChoBmgJaA9DCGNCzCVVh2VAlIaUUpRoFU3oA2gWR0CiYZSE12q2dX2UKGgGaAloD0MIqtOBrKdkYkCUhpRSlGgVTegDaBZHQKJiG1YQrc11fZQoaAZoCWgPQwgnFviKbtZlQJSGlFKUaBVN6ANoFkdAomTQlhPTHHV9lChoBmgJaA9DCO87hsd+JHBAlIaUUpRoFU2YAWgWR0CiZcX1anrIdX2UKGgGaAloD0MIlIWvr/WiYUCUhpRSlGgVTegDaBZHQKJl1UrCm/F1fZQoaAZoCWgPQwjMe5xpQvBkQJSGlFKUaBVN6ANoFkdAomeRJGvwE3V9lChoBmgJaA9DCMo0mlyMgGBAlIaUUpRoFU3oA2gWR0CiaE1f/m1ZdX2UKGgGaAloD0MI74y2KomSQ0CUhpRSlGgVS+5oFkdAomtlp9JBgXV9lChoBmgJaA9DCHcstknFl2FAlIaUUpRoFU3oA2gWR0CibUfOlfqpdX2UKGgGaAloD0MIAmcpWU6jZ0CUhpRSlGgVTegDaBZHQKJwRM6BAfN1fZQoaAZoCWgPQwgMrrmj/ytvQJSGlFKUaBVNhgFoFkdAonF3J3gUDnV9lChoBmgJaA9DCCdKQiJt2zlAlIaUUpRoFUv4aBZHQKJ5tojfNzN1fZQoaAZoCWgPQwg8Mlab/whkQJSGlFKUaBVN6ANoFkdAonpQ8SwnpnV9lChoBmgJaA9DCCm0rPvHlGFAlIaUUpRoFU3oA2gWR0CielrcCYCydX2UKGgGaAloD0MImdU73A4rZUCUhpRSlGgVTegDaBZHQKJ7zOJLuhN1fZQoaAZoCWgPQwgzT64pED5jQJSGlFKUaBVN6ANoFkdAooWqbrkbP3V9lChoBmgJaA9DCB5ssdtnUmZAlIaUUpRoFU3oA2gWR0CihbHJcPe6dX2UKGgGaAloD0MI4Sh5dY4nXUCUhpRSlGgVTegDaBZHQKKH5O/L1VZ1fZQoaAZoCWgPQwjDLLRzGhNjQJSGlFKUaBVN6ANoFkdAoohNe6ZpjHV9lChoBmgJaA9DCPYjRWTYPWFAlIaUUpRoFU3oA2gWR0CiiP/tpmEodX2UKGgGaAloD0MI3Lqbp7rCY0CUhpRSlGgVTegDaBZHQKKJlCJGe+V1fZQoaAZoCWgPQwgijJ/GPSlgQJSGlFKUaBVN6ANoFkdAoo3Bgy/KyXV9lChoBmgJaA9DCNs0tteChmxAlIaUUpRoFU0DA2gWR0CijrGxD9fkdX2UKGgGaAloD0MIO+ElOPWBXUCUhpRSlGgVTegDaBZHQKKP9X1anrJ1fZQoaAZoCWgPQwjC2a1lsrBjQJSGlFKUaBVN6ANoFkdAopDW1fE4vXV9lChoBmgJaA9DCGrC9pMx719AlIaUUpRoFU3oA2gWR0CilJq508vFdX2UKGgGaAloD0MI8lt0stTjZECUhpRSlGgVTegDaBZHQKKaBgaWHDd1fZQoaAZoCWgPQwhyNbIr7UNyQJSGlFKUaBVNXQFoFkdAopr0HbAUL3V9lChoBmgJaA9DCNy4xfzcv21AlIaUUpRoFU13A2gWR0CiooABLf1pdX2UKGgGaAloD0MIlBPtKqSfXkCUhpRSlGgVTegDaBZHQKKkZgRbr1N1fZQoaAZoCWgPQwgSpFLs6ONoQJSGlFKUaBVN6ANoFkdAoqT2Bg/kenV9lChoBmgJaA9DCE5HADcLamVAlIaUUpRoFU3oA2gWR0CipQB3A2ycdX2UKGgGaAloD0MIAFeyY6NSY0CUhpRSlGgVTegDaBZHQKKmyf5DZ151fZQoaAZoCWgPQwg6AyMv6/diQJSGlFKUaBVN6ANoFkdAoqbRQ1rIo3V9lChoBmgJaA9DCCmUha+v+V5AlIaUUpRoFU3oA2gWR0CisoD0+TvBdX2UKGgGaAloD0MIgXueP+0jZUCUhpRSlGgVTegDaBZHQKKy7wVj7Q91fZQoaAZoCWgPQwheTZ6yGrNkQJSGlFKUaBVN6ANoFkdAorOscS5AhXV9lChoBmgJaA9DCKDBps6jeGVAlIaUUpRoFU3oA2gWR0CitExIre67dX2UKGgGaAloD0MIEmvxKQCkcECUhpRSlGgVTZoDaBZHQKK2LlfZ26l1fZQoaAZoCWgPQwgc6ndha0pOQJSGlFKUaBVNFQFoFkdAorgqbKA8S3V9lChoBmgJaA9DCIy7QbRWCmxAlIaUUpRoFU14AWgWR0CiuOvBBRhudX2UKGgGaAloD0MIjURoBBtlYECUhpRSlGgVTegDaBZHQKK6uLWqcVh1fZQoaAZoCWgPQwitvU9VIYBiQJSGlFKUaBVN6ANoFkdAorubGo73f3V9lChoBmgJaA9DCLB1qRH6iWNAlIaUUpRoFU3oA2gWR0Civ1pHiFTOdX2UKGgGaAloD0MIilqaW2F/ckCUhpRSlGgVTeUBaBZHQKLEeAbQ1Jl1fZQoaAZoCWgPQwgzVMVU+hFgQJSGlFKUaBVN6ANoFkdAosUIkRjBmHV9lChoBmgJaA9DCN3qOel9pmNAlIaUUpRoFU3oA2gWR0Cixf1Fpfx+dX2UKGgGaAloD0MIMuNtpZeVcUCUhpRSlGgVTVgCaBZHQKLGz/yXlbN1fZQoaAZoCWgPQwhbejTVExpxQJSGlFKUaBVNtAFoFkdAosd9AmiQDHV9lChoBmgJaA9DCGiSWFJumG9AlIaUUpRoFU2kAWgWR0Cix7l5WzWxdX2UKGgGaAloD0MI0ZLH0/IVY0CUhpRSlGgVTegDaBZHQKLMWlVLi/B1fZQoaAZoCWgPQwg83XnieZ9xQJSGlFKUaBVNxgJoFkdAos3TJIUah3V9lChoBmgJaA9DCCMWMewwDmNAlIaUUpRoFU3oA2gWR0Ciznba7EpBdX2UKGgGaAloD0MIQWSRJt7WX0CUhpRSlGgVTegDaBZHQKLOgCiAUcp1fZQoaAZoCWgPQwgnhA66hKthQJSGlFKUaBVN6ANoFkdAotA6C17Y03VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fe78a62f7349dcdaf23f96c1dd9be9175c846dcef49c98025fba29d64d298a1
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1049c39cd44c296211232c894097bdf87e6573e3411092aaac6e0165a99f1984
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (241 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 238.33742972248152, "std_reward": 23.758986991242292, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-15T05:22:50.150868"}
|