Artvv commited on
Commit
ec55ce6
·
verified ·
1 Parent(s): d5b5f8d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +211 -160
README.md CHANGED
@@ -5,9 +5,8 @@ library_name: peft
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
@@ -17,43 +16,221 @@ library_name: peft
17
 
18
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
  - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
@@ -63,140 +240,14 @@ library_name: peft
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
  ### Framework versions
201
 
202
  - PEFT 0.14.0
 
5
 
6
  # Model Card for Model ID
7
 
8
+ This is a Qlora specifically dedicated to the identification of sophism and cognitive bias
9
+ His performance for now is 85%-100% in detecting sophism , and 85%-100% for detectiong cognitive bias
 
10
 
11
  ## Model Details
12
 
 
16
 
17
 
18
 
19
+ - **Developed by:** Arthur Vigier
20
+ - **Model type:** Qlora
 
 
21
  - **Language(s) (NLP):** [More Information Needed]
22
+ - **License:** Apache 2.0
23
+ - **Finetuned from model :** mistral-7b-instruct-v0.3-bnb-4bit
 
 
 
 
 
 
 
 
24
 
25
  ## Uses
26
 
27
+ It is dedicated to be used by anyone that want to judge public discourse based on the fundational basis of there language and the solidity
28
+ of it. Using for education and increasing critical think is also a good way to use this tool
 
29
 
30
+ ### API
31
 
32
+ PUBLIC API COMING SOON
33
+ ### Direct Use
 
 
 
34
 
35
+ ```python
36
+ import torch
37
+ from transformers import AutoModelForCausalLM, AutoTokenizer
38
+ from peft import PeftModel
39
+ import re
40
+
41
+ class RationalityDebugger:
42
+ def __init__(self, base_model="mistralai/Mistral-7B-v0.1", lora_model="your-username/rationality-debugger-v1.0"):
43
+ """
44
+ Initialize the cognitive bias and logical fallacy detector.
45
+
46
+ Args:
47
+ base_model: Base model from Hugging Face
48
+ lora_model: LoRA adapters for rationality analysis
49
+ """
50
+ print(f"Loading base model: {base_model}")
51
+ self.tokenizer = AutoTokenizer.from_pretrained(base_model)
52
+
53
+ # Options for optimized loading
54
+ model_kwargs = {
55
+ "torch_dtype": torch.float16,
56
+ "device_map": "auto",
57
+ "low_cpu_mem_usage": True
58
+ }
59
+
60
+ # Try first with 4-bit quantization to save memory
61
+ try:
62
+ from transformers import BitsAndBytesConfig
63
+ quantization_config = BitsAndBytesConfig(
64
+ load_in_4bit=True,
65
+ bnb_4bit_compute_dtype=torch.float16,
66
+ bnb_4bit_use_double_quant=True
67
+ )
68
+ model_kwargs["quantization_config"] = quantization_config
69
+ self.base_model = AutoModelForCausalLM.from_pretrained(base_model, **model_kwargs)
70
+ except:
71
+ # Fallback if bitsandbytes is not available
72
+ print("4-bit quantization not available, using standard loading...")
73
+ self.base_model = AutoModelForCausalLM.from_pretrained(base_model, **model_kwargs)
74
+
75
+ print(f"Applying LoRA adapters: {lora_model}")
76
+ self.model = PeftModel.from_pretrained(self.base_model, lora_model)
77
+ self.model.eval() # Evaluation mode
78
+
79
+ self.prompt_template = """
80
+ Analyze the following argument and identify any logical fallacies or cognitive biases:
81
+
82
+ {text}
83
+
84
+ ###OUTPUT FORMAT
85
+ [Argument] Valid/Invalid
86
+ → If Valid: Type: [ANALYTICAL / INDUCTIVE / ABDUCTIVE]
87
+ [Sophisms] Yes/No
88
+ → If Yes: Which: [List detected fallacies]
89
+ → Extract(s): [Provide exact snippet(s)]
90
+ [Biases] Yes/No
91
+ → If Yes: Which: [List detected biases]
92
+ → Extract(s): [Provide exact snippet(s)]
93
+
94
+ [Short explanation]
95
+ """
96
+
97
+ def analyze(self, text, max_new_tokens=200, temperature=0.1):
98
+ """
99
+ Analyze text to detect cognitive biases and logical fallacies.
100
+
101
+ Args:
102
+ text: Text to analyze
103
+ max_new_tokens: Maximum number of new tokens to generate
104
+ temperature: Temperature for generation (lower = more deterministic)
105
+
106
+ Returns:
107
+ dict: Structured analysis result and raw text
108
+ """
109
+ prompt = self.prompt_template.format(text=text)
110
+
111
+ inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
112
+
113
+ with torch.no_grad():
114
+ outputs = self.model.generate(
115
+ **inputs,
116
+ max_new_tokens=max_new_tokens,
117
+ temperature=temperature,
118
+ top_p=0.9,
119
+ do_sample=temperature > 0
120
+ )
121
+
122
+ # Extract only the generated part (not the prompt)
123
+ generated_text = self.tokenizer.decode(
124
+ outputs[0][inputs.input_ids.shape[1]:],
125
+ skip_special_tokens=True
126
+ )
127
+
128
+ # Parse the response to extract the structure
129
+ result = self._parse_response(generated_text)
130
+
131
+ return {
132
+ "raw_text": generated_text,
133
+ "structured": result
134
+ }
135
+
136
+ def _parse_response(self, text):
137
+ """Parse the model's response to extract structured information"""
138
+ result = {
139
+ "argument_valid": None,
140
+ "argument_type": None,
141
+ "has_sophisms": None,
142
+ "detected_sophisms": [],
143
+ "has_biases": None,
144
+ "detected_biases": [],
145
+ "too_short": False,
146
+ "explanation": ""
147
+ }
148
+
149
+ # Simple parsing example - adapt as needed
150
+ text_lower = text.lower()
151
+
152
+ # Argument validity detection
153
+ if "valid argument" in text_lower or "[argument] valid" in text_lower:
154
+ result["argument_valid"] = True
155
+ elif "invalid argument" in text_lower or "[argument] invalid" in text_lower:
156
+ result["argument_valid"] = False
157
+
158
+ # Argument type detection
159
+ for arg_type in ["ANALYTICAL", "INDUCTIVE", "ABDUCTIVE"]:
160
+ if arg_type.lower() in text_lower:
161
+ result["argument_type"] = arg_type
162
+
163
+ # Fallacy detection
164
+ sophism_keywords = ["ad hominem", "straw man", "red herring", "false dilemma",
165
+ "slippery slope", "post hoc", "circular reasoning"]
166
+
167
+ for sophism in sophism_keywords:
168
+ if sophism in text_lower:
169
+ result["detected_sophisms"].append(sophism)
170
+
171
+ result["has_sophisms"] = len(result["detected_sophisms"]) > 0
172
+
173
+ # Cognitive bias detection
174
+ bias_keywords = ["confirmation bias", "availability bias", "anchoring bias",
175
+ "hindsight bias", "halo effect", "dunning-kruger"]
176
+
177
+ for bias in bias_keywords:
178
+ if bias in text_lower:
179
+ result["detected_biases"].append(bias)
180
+
181
+ result["has_biases"] = len(result["detected_biases"]) > 0
182
+
183
+ # Explanation
184
+ explanation_match = re.search(r"\[Short explanation\](.*?)(?=$|\[)", text, re.DOTALL)
185
+ if explanation_match:
186
+ result["explanation"] = explanation_match.group(1).strip()
187
+ else:
188
+ # If no explanation tag, take the whole text
189
+ result["explanation"] = text
190
+
191
+ return result
192
+
193
+
194
+ # --- Usage example ---
195
+ if __name__ == "__main__":
196
+ # Create the analyzer
197
+ analyzer = RationalityDebugger(
198
+ base_model="mistralai/Mistral-7B-v0.1",
199
+ lora_model="your-username/rationality-debugger-v1.0"
200
+ )
201
+
202
+ # Analysis example
203
+ argument = """
204
+ All birds can fly. Penguins are birds. Therefore, penguins can fly.
205
+ """
206
+
207
+ result = analyzer.analyze(argument)
208
+
209
+ # Display raw result
210
+ print("\n=== RAW ANALYSIS ===")
211
+ print(result["raw_text"])
212
+
213
+ # Display structured result
214
+ print("\n=== STRUCTURED ANALYSIS ===")
215
+ print(f"Valid argument: {result['structured']['argument_valid']}")
216
+
217
+ if result["structured"]["detected_sophisms"]:
218
+ print("\nDetected fallacies:")
219
+ for sophism in result["structured"]["detected_sophisms"]:
220
+ print(f"- {sophism}")
221
+
222
+ if result["structured"]["detected_biases"]:
223
+ print("\nDetected cognitive biases:")
224
+ for bias in result["structured"]["detected_biases"]:
225
+ print(f"- {bias}")
226
+
227
+ print("\nExplanation:")
228
+ print(result["structured"]["explanation"])
229
+ ```
230
 
231
  ### Out-of-Scope Use
232
 
233
+ It is not intended to harass anyone or being rude
 
 
234
 
235
  ## Bias, Risks, and Limitations
236
 
 
240
 
241
  ### Recommendations
242
 
243
+ He is very efficient to the most common sophism and cognitive bias but for some more niche like bias frequency illusion he can be less efficient.
244
+ He is mainly dedicated to detect sophism and cognitive bias , he can detect valid reasoning but it is not his main purpose
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245
 
246
+ ## Model Card Contact
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
247
 
248
249
 
 
250
 
 
251
  ### Framework versions
252
 
253
  - PEFT 0.14.0