Aryn
/

Object Detection
Transformers
Safetensors
deformable_detr
vision
Inference Endpoints
jonfritz commited on
Commit
4f80bbc
1 Parent(s): dde42b5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md CHANGED
@@ -1,3 +1,94 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ tags:
4
+ - object-detection
5
+ - vision
6
+ datasets:
7
+ - DocLayNet
8
+ widget:
9
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg
10
+ example_title: Savanna
11
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
12
+ example_title: Football Match
13
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg
14
+ example_title: Airport
15
  ---
16
+
17
+ # Deformable DETR model trained on DocLayNet
18
+
19
+ Deformable DEtection TRansformer (DETR), trained on DocLayNet (including 80k annotated pages in 11 classes).
20
+
21
+ ## Model description
22
+
23
+ The DETR model is an encoder-decoder transformer with a convolutional backbone. Two heads are added on top of the decoder outputs in order to perform
24
+ object detection: a linear layer for the class labels and a MLP (multi-layer perceptron) for the bounding boxes. The model uses so-called object queries
25
+ to detect objects in an image. Each object query looks for a particular object in the image. For COCO, the number of object queries is set to 100.
26
+
27
+ The model is trained using a "bipartite matching loss": one compares the predicted classes + bounding boxes of each of the N = 100 object queries to the
28
+ ground truth annotations, padded up to the same length N (so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and
29
+ "no bounding box" as bounding box). The Hungarian matching algorithm is used to create an optimal one-to-one mapping between each of the N queries and each
30
+ of the N annotations. Next, standard cross-entropy (for the classes) and a linear combination of the L1 and generalized IoU loss (for the bounding boxes) are
31
+ used to optimize the parameters of the model.
32
+
33
+ ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/deformable_detr_architecture.png)
34
+
35
+ ## Intended uses & limitations
36
+
37
+ You can use the raw model for object detection. See the [model hub](https://huggingface.co/models?search=sensetime/deformable-detr) to look for all available
38
+ Deformable DETR models.
39
+
40
+ ### How to use
41
+
42
+ Here is how to use this model:
43
+
44
+ ```python
45
+ from transformers import AutoImageProcessor, DeformableDetrForObjectDetection
46
+ import torch
47
+ from PIL import Image
48
+ import requests
49
+
50
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
51
+ image = Image.open(requests.get(url, stream=True).raw)
52
+
53
+ processor = AutoImageProcessor.from_pretrained("facebook/deformable-detr-detic")
54
+ model = DeformableDetrForObjectDetection.from_pretrained("facebook/deformable-detr-detic")
55
+
56
+ inputs = processor(images=image, return_tensors="pt")
57
+ outputs = model(**inputs)
58
+
59
+ # convert outputs (bounding boxes and class logits) to COCO API
60
+ # let's only keep detections with score > 0.7
61
+ target_sizes = torch.tensor([image.size[::-1]])
62
+ results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.7)[0]
63
+
64
+ for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
65
+ box = [round(i, 2) for i in box.tolist()]
66
+ print(
67
+ f"Detected {model.config.id2label[label.item()]} with confidence "
68
+ f"{round(score.item(), 3)} at location {box}"
69
+ )
70
+ ```
71
+
72
+ ## Evaluation results
73
+
74
+ This model achieves 57.1 box mAP on DocLayNet.
75
+
76
+ ## Training data
77
+
78
+ The Deformable DETR model was trained on DocLayNet. It was introduced in the paper [DocLayNet: A Large Human-Annotated Dataset for
79
+ Document-Layout Analysis](https://arxiv.org/abs/2206.01062) by Pfitzmann et al. and first released in [this repository](https://github.com/DS4SD/DocLayNet).
80
+
81
+ ### BibTeX entry and citation info
82
+
83
+ ```bibtex
84
+ @misc{https://doi.org/10.48550/arxiv.2010.04159,
85
+ doi = {10.48550/ARXIV.2010.04159},
86
+ url = {https://arxiv.org/abs/2010.04159},
87
+ author = {Zhu, Xizhou and Su, Weijie and Lu, Lewei and Li, Bin and Wang, Xiaogang and Dai, Jifeng},
88
+ keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
89
+ title = {Deformable DETR: Deformable Transformers for End-to-End Object Detection},
90
+ publisher = {arXiv},
91
+ year = {2020},
92
+ copyright = {arXiv.org perpetual, non-exclusive license}
93
+ }
94
+ ```