File size: 6,124 Bytes
40f71f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from layers.Transformer_EncDec import Decoder, DecoderLayer, Encoder, EncoderLayer
from layers.SelfAttention_Family import FullAttention, AttentionLayer
from layers.Embed import PatchEmbedding
from collections import Counter
from layers.SharedWavMoE import WavMoE
from layers.RevIN import RevIN
import torch.fft
from layers.Embed import DataEmbedding

class FlattenHead(nn.Module):
    def __init__(self, n_vars, nf, target_window, head_dropout=0):
        super().__init__()
        self.n_vars = n_vars
        # self.flatten = nn.Flatten(start_dim=-2)
        self.linear = nn.Linear(nf, target_window)
        self.dropout = nn.Dropout(head_dropout)

    def forward(self, x):  # x: [bs x nvars x d_model x patch_num]
        # x = self.flatten(x)
        # print(self.linear,x.shape)
        x = self.linear(x)
        x = self.dropout(x)
        return x



class Model(nn.Module):
    """

   """

    def __init__(self, configs):
        super(Model, self).__init__()
        self.task_name = configs.task_name
        self.seq_len = configs.seq_len
        self.patch_len = configs.input_token_len
        self.stride = self.patch_len
        self.pred_len = configs.test_pred_len
        self.test_seq_len = configs.test_seq_len
        # embedding configs
        self.output_attention = configs.output_attention
        self.padding = configs.padding
        # MoE设置
        self.hidden_size = configs.hidden_size
        self.intermediate_size = configs.intermediate_size
        self.top_k = configs.top_k
        self.shared_experts = configs.shared_experts
        self.wavelet = configs.wavelet
        self.level = configs.shared_experts
        self.proj_wight = configs.proj_wight
        # Embedding
        self.patch_embedding = PatchEmbedding(
            configs.d_model, self.patch_len, self.stride, self.padding, configs.dropout)

        self.data_embedding = DataEmbedding(configs.enc_in, configs.d_model, configs.embed, configs.freq,
                                                    configs.dropout)

        self.revin_layer = RevIN(configs.enc_in)
        self.encoder_patch = Encoder(
            [
                EncoderLayer(
                    AttentionLayer(
                        FullAttention(False, configs.factor,
                                      attention_dropout=configs.dropout,
                                      output_attention=configs.output_attention),
                        configs.d_model, configs.n_heads),
                    configs.d_model,
                    configs.d_ff,
                    dropout=configs.dropout,
                    activation=configs.activation
                ) for l in range(configs.e_layers)
            ],
            norm_layer=torch.nn.LayerNorm(configs.d_model)
        )
        self.encoder_time = Encoder(
            [
                EncoderLayer(
                    AttentionLayer(
                        FullAttention(False, configs.factor,
                                      attention_dropout=configs.dropout,
                                      output_attention=configs.output_attention),
                        configs.d_model, configs.n_heads),
                    configs.d_model,
                    configs.d_ff,
                    dropout=configs.dropout,
                    activation=configs.activation
                ) for l in range(configs.e_layers)
            ],
            norm_layer=torch.nn.LayerNorm(configs.d_model)
        )
        self.head_nf = configs.d_model * \
                       int((configs.seq_len - self.patch_len) / self.stride + 1)
        self.projection = nn.Linear(self.head_nf, int(configs.seq_len*self.proj_wight), bias=True)

        self.data_projection = nn.Linear(configs.d_model, configs.enc_in, bias=True)
        self.wavmoe = WavMoE(configs)
        self.head = FlattenHead(configs.enc_in, nf= int(configs.seq_len*self.proj_wight), target_window= self.seq_len,
                                    head_dropout=configs.dropout)
        self.gelu = nn.GELU()



    def main(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
        # 归一化并且嵌入
        x_revin = self.revin_layer(x_enc, 'norm').permute(0, 2, 1)
        # print("x_revin.shape:",x_revin.shape)
        B, D, S = x_revin.shape

        # 进入注意力机制
        x_inver=self.data_embedding(x_revin.permute(0, 2, 1), x_mark_enc)
        nav_out, attn_w = self.encoder_time(x_inver, attn_mask=None)
        #print("nav_out.shape:", nav_out.shape,self.data_projection)
        nav_out = self.data_projection(nav_out)
        #print("nav_out.shape:", nav_out.shape)

        #patch embedding进入多头FullAttention

        # u: [bs * nvars x patch_num x d_model]
        x_pe, n_vars = self.patch_embedding(x_revin+nav_out.permute(0, 2, 1))
        #print("x_pe.shape:",x_pe.shape, n_vars)
        enc_out, attn = self.encoder_patch(x_pe)
        dec_out = enc_out.reshape(B, D, -1)
        #print("dec_out.shape:",dec_out.shape, self.head_nf)
        act_val = self.projection(dec_out)
        #print("act_val:", act_val.shape)

        # 专家系统
        moe_out, router_logits = self.wavmoe(act_val + nav_out.permute(0, 2, 1))
        #print("moe_out", moe_out.shape)
        head_out = self.head(moe_out)

        # 逆归一化输出
        x_out = self.revin_layer(head_out.permute(0, 2, 1), 'denorm')
        #print(x_out.shape)
        return x_out
    def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
        if self.task_name == 'long_term_forecast' or self.task_name == 'forecast':
            dec_out = self.main(x_enc, x_mark_enc, x_dec, x_mark_dec)
            return dec_out[:, -self.test_seq_len :, :]  # [B, L, D]
        if self.task_name == 'anomaly_detection':
            dec_out = self.main(x_enc, x_mark_enc, x_dec, x_mark_dec)
            return dec_out  # [B, L, D]
        return None