--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: speecht5_finetuned_eng_ashish results: [] --- # speecht5_finetuned_eng_ashish This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0602 | 1 | 0.7250 | | 5.9911 | 0.1203 | 2 | 1.1100 | | 5.9911 | 0.1805 | 3 | 0.8121 | | 6.7456 | 0.2406 | 4 | 0.7525 | | 6.7456 | 0.3008 | 5 | 0.7550 | | 6.1898 | 0.3609 | 6 | 0.7549 | | 6.1898 | 0.4211 | 7 | 0.7394 | | 5.7588 | 0.4812 | 8 | 0.7304 | | 5.7588 | 0.5414 | 9 | 0.7182 | | 5.2002 | 0.6015 | 10 | 0.7111 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0