Update README.md
Browse files
README.md
CHANGED
@@ -51,6 +51,36 @@ for i in range(len(sample_outputs)):
|
|
51 |
|
52 |
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
# to select the top n results:
|
55 |
|
56 |
from sentence_transformers import SentenceTransformer, util
|
@@ -63,8 +93,9 @@ corpus_embeddings = embedder.encode(corpus, convert_to_tensor=True)
|
|
63 |
query = input_query.lower()
|
64 |
query_embedding = embedder.encode(query, convert_to_tensor=True)
|
65 |
cos_scores = util.pytorch_cos_sim(query_embedding, corpus_embeddings)[0]
|
66 |
-
top_results = torch.topk(cos_scores, k=
|
67 |
-
|
|
|
68 |
print(corpus[idx], "(Score: {:.4f})".format(score))
|
69 |
|
70 |
```
|
|
|
51 |
|
52 |
|
53 |
|
54 |
+
# to select the top n results:
|
55 |
+
|
56 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained("salesken/clariq_gpt2")
|
58 |
+
model = AutoModelWithLMHead.from_pretrained("salesken/clariq_gpt2")
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
input_query="Serve your models directly from Hugging Face infrastructure and run large scale NLP models in milliseconds with just a few lines of code"
|
63 |
+
|
64 |
+
query= input_query + " ~~ "
|
65 |
+
|
66 |
+
|
67 |
+
input_ids = tokenizer.encode(query.lower(), return_tensors='pt')
|
68 |
+
sample_outputs = model.generate(input_ids,
|
69 |
+
do_sample=True,
|
70 |
+
num_beams=1,
|
71 |
+
max_length=128,
|
72 |
+
temperature=0.9,
|
73 |
+
top_k = 40,
|
74 |
+
num_return_sequences=10)
|
75 |
+
clarifications_gen = []
|
76 |
+
for i in range(len(sample_outputs)):
|
77 |
+
r = tokenizer.decode(sample_outputs[i], skip_special_tokens=True).split('||')[0]
|
78 |
+
r = r.split(' ~~ ~~')[1]
|
79 |
+
if r not in clarifications_gen:
|
80 |
+
clarifications_gen.append(r)
|
81 |
+
|
82 |
+
print(clarifications_gen)
|
83 |
+
|
84 |
# to select the top n results:
|
85 |
|
86 |
from sentence_transformers import SentenceTransformer, util
|
|
|
93 |
query = input_query.lower()
|
94 |
query_embedding = embedder.encode(query, convert_to_tensor=True)
|
95 |
cos_scores = util.pytorch_cos_sim(query_embedding, corpus_embeddings)[0]
|
96 |
+
top_results = torch.topk(cos_scores, k=5)
|
97 |
+
print("Top clarifications generated :")
|
98 |
+
for score, idx in zip(top_results[0], top_results[1]):
|
99 |
print(corpus[idx], "(Score: {:.4f})".format(score))
|
100 |
|
101 |
```
|