Ashishkr commited on
Commit
e35fdfd
1 Parent(s): d78c6b6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -1
README.md CHANGED
@@ -21,4 +21,51 @@ A user is asking an ambiguous question (where ambiguous question is a question t
21
  - are you looking for a suitable ldl to use as a server or a client (Score: 0.3182) <br />
22
  - how would you like to consume the nlp model (Score: 0.2842) <br />
23
 
24
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  - are you looking for a suitable ldl to use as a server or a client (Score: 0.3182) <br />
22
  - how would you like to consume the nlp model (Score: 0.2842) <br />
23
 
24
+
25
+ ```
26
+ from transformers import AutoTokenizer, AutoModelWithLMHead
27
+ tokenizer = AutoTokenizer.from_pretrained("salesken/clariq_gpt2")
28
+ model = AutoModelWithLMHead.from_pretrained("salesken/clariq_gpt2")
29
+
30
+
31
+
32
+ input_query="Serve your models directly from Hugging Face infrastructure and run large scale NLP models in milliseconds with just a few lines of code"
33
+
34
+ query= input_query + " ~~ "
35
+
36
+
37
+ input_ids = tokenizer.encode(query.lower(), return_tensors='pt')
38
+ sample_outputs = model.generate(input_ids,
39
+ do_sample=True,
40
+ num_beams=1,
41
+ max_length=128,
42
+ temperature=0.9,
43
+ top_k = 40,
44
+ num_return_sequences=10)
45
+ clarifications_gen = []
46
+ for i in range(len(sample_outputs)):
47
+ r = tokenizer.decode(sample_outputs[i], skip_special_tokens=True).split('||')[0]
48
+ r = r.split(' ~~ ~~')[1]
49
+ if r not in clarifications_gen:
50
+ clarifications_gen.append(r)
51
+
52
+
53
+
54
+ # to select the top n results:
55
+
56
+ from sentence_transformers import SentenceTransformer, util
57
+ import torch
58
+ embedder = SentenceTransformer('paraphrase-distilroberta-base-v1')
59
+
60
+ # Corpus with example sentences
61
+ corpus = clarifications_gen
62
+ corpus_embeddings = embedder.encode(corpus, convert_to_tensor=True)
63
+ # Query sentences:
64
+ query = input_query.lower()
65
+ query_embedding = embedder.encode(query, convert_to_tensor=True)
66
+ cos_scores = util.pytorch_cos_sim(query_embedding, corpus_embeddings)[0]
67
+ top_results = torch.topk(cos_scores, k=1)
68
+ for score, idx in zip(top_results[0], top_results[3]):
69
+ print(corpus[idx], "(Score: {:.4f})".format(score))
70
+
71
+ ```