File size: 40,070 Bytes
8fec399 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 |
import random
import gradio as gr
from modules import sd_models
from modules import sd_vae
from modules import ui_components
from modules import shared
from modules import extras
from modules import images
from sd_bmab import constants
from sd_bmab import util
from sd_bmab import detectors
from sd_bmab import parameters
from sd_bmab.base import context
from sd_bmab.base import filter
from sd_bmab.base import installer
from sd_bmab import pipeline
from sd_bmab import masking
from sd_bmab.util import debug_print
bmab_version = 'v23.12.05.0'
final_images = []
last_process = None
bmab_script = None
gallery_select_index = 0
def create_ui(bscript, is_img2img):
class ListOv(list):
def __iadd__(self, x):
self.append(x)
return self
elem = ListOv()
with gr.Group():
with gr.Row():
with gr.Column():
elem += gr.Checkbox(label=f'Enable BMAB', value=False)
with gr.Column():
btn_stop = ui_components.ToolButton('โน๏ธ', visible=True, interactive=True, tooltip='stop generation', elem_id='bmab_stop_generation')
with gr.Accordion(f'BMAB Preprocessor', open=False):
with gr.Row():
with gr.Tab('Context', id='bmab_context', elem_id='bmab_context_tabs'):
with gr.Tab('Generic'):
with gr.Row():
with gr.Column():
with gr.Row():
checkpoints = [constants.checkpoint_default]
checkpoints.extend([str(x) for x in sd_models.checkpoints_list.keys()])
checkpoint_models = gr.Dropdown(label='CheckPoint', visible=True, value=checkpoints[0], choices=checkpoints)
elem += checkpoint_models
refresh_checkpoint_models = ui_components.ToolButton(value='๐', visible=True, interactive=True)
with gr.Column():
with gr.Row():
vaes = [constants.vae_default]
vaes.extend([str(x) for x in sd_vae.vae_dict.keys()])
vaes_models = gr.Dropdown(label='SD VAE', visible=True, value=vaes[0], choices=vaes)
elem += vaes_models
refresh_vae_models = ui_components.ToolButton(value='๐', visible=True, interactive=True)
with gr.Row():
gr.Markdown(constants.checkpoint_description)
with gr.Row():
elem += gr.Slider(minimum=0, maximum=1.5, value=1, step=0.001, label='txt2img noise multiplier for hires.fix (EXPERIMENTAL)', elem_id='bmab_txt2img_noise_multiplier')
with gr.Row():
elem += gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label='txt2img extra noise multiplier for hires.fix (EXPERIMENTAL)', elem_id='bmab_txt2img_extra_noise_multiplier')
with gr.Row():
with gr.Column():
with gr.Row():
dd_hiresfix_filter1 = gr.Dropdown(label='Hires.fix filter before upscale', visible=True, value=filter.filters[0], choices=filter.filters)
elem += dd_hiresfix_filter1
with gr.Column():
with gr.Row():
dd_hiresfix_filter2 = gr.Dropdown(label='Hires.fix filter after upscale', visible=True, value=filter.filters[0], choices=filter.filters)
elem += dd_hiresfix_filter2
with gr.Tab('Kohya Hires.fix'):
with gr.Row():
with gr.Column():
elem += gr.Checkbox(label='Enable Kohya hires.fix', value=False)
with gr.Row():
gr.HTML(constants.kohya_hiresfix_description)
with gr.Row():
elem += gr.Slider(minimum=0, maximum=0.5, step=0.01, label="Stop at, first", value=0.15)
elem += gr.Slider(minimum=1, maximum=10, step=1, label="Depth, first", value=3)
with gr.Row():
elem += gr.Slider(minimum=0, maximum=0.5, step=0.01, label="Stop at, second", value=0.4)
elem += gr.Slider(minimum=1, maximum=10, step=1, label="Depth, second", value=4)
with gr.Row():
elem += gr.Dropdown(['bicubic', 'bilinear', 'nearest', 'nearest-exact'], label='Layer scaler', value='bicubic')
elem += gr.Slider(minimum=0.1, maximum=1.0, step=0.05, label="Downsampling scale", value=0.5)
elem += gr.Slider(minimum=1.0, maximum=4.0, step=0.1, label="Upsampling scale", value=2.0)
with gr.Row():
elem += gr.Checkbox(label="Smooth scaling", value=True)
elem += gr.Checkbox(label="Early upsampling", value=False)
elem += gr.Checkbox(label='Disable for additional passes', value=True)
with gr.Tab('Resample', id='bmab_resample', elem_id='bmab_resample_tabs'):
with gr.Row():
with gr.Column():
elem += gr.Checkbox(label='Enable self resample', value=False)
with gr.Column():
elem += gr.Checkbox(label='Save image before processing', value=False)
with gr.Row():
elem += gr.Checkbox(label='Enable resample before hires.fix', value=False)
with gr.Row():
with gr.Column():
with gr.Row():
checkpoints = [constants.checkpoint_default]
checkpoints.extend([str(x) for x in sd_models.checkpoints_list.keys()])
resample_models = gr.Dropdown(label='CheckPoint', visible=True, value=checkpoints[0], choices=checkpoints)
elem += resample_models
refresh_resample_models = ui_components.ToolButton(value='๐', visible=True, interactive=True)
with gr.Column():
with gr.Row():
vaes = [constants.vae_default]
vaes.extend([str(x) for x in sd_vae.vae_dict.keys()])
resample_vaes = gr.Dropdown(label='SD VAE', visible=True, value=vaes[0], choices=vaes)
elem += resample_vaes
refresh_resample_vaes = ui_components.ToolButton(value='๐', visible=True, interactive=True)
with gr.Row():
with gr.Column(min_width=100):
methods = ['txt2img-1pass', 'txt2img-2pass', 'img2img-1pass']
elem += gr.Dropdown(label='Resample method', visible=True, value=methods[0], choices=methods)
with gr.Column():
dd_resample_filter = gr.Dropdown(label='Resample filter', visible=True, value=filter.filters[0], choices=filter.filters)
elem += dd_resample_filter
with gr.Row():
elem += gr.Textbox(placeholder='prompt. if empty, use main prompt', lines=3, visible=True, value='', label='Resample prompt')
with gr.Row():
elem += gr.Textbox(placeholder='negative prompt. if empty, use main negative prompt', lines=3, visible=True, value='', label='Resample negative prompt')
with gr.Row():
with gr.Column(min_width=100):
asamplers = [constants.sampler_default]
asamplers.extend([x.name for x in shared.list_samplers()])
elem += gr.Dropdown(label='Sampling method', visible=True, value=asamplers[0], choices=asamplers)
with gr.Column(min_width=100):
upscalers = [constants.fast_upscaler]
upscalers.extend([x.name for x in shared.sd_upscalers])
elem += gr.Dropdown(label='Upscaler', visible=True, value=upscalers[0], choices=upscalers)
with gr.Row():
with gr.Column(min_width=100):
elem += gr.Slider(minimum=1, maximum=150, value=20, step=1, label='Resample Sampling Steps', elem_id='bmab_resample_steps')
elem += gr.Slider(minimum=1, maximum=30, value=7, step=0.5, label='Resample CFG Scale', elem_id='bmab_resample_cfg_scale')
elem += gr.Slider(minimum=0, maximum=1, value=0.75, step=0.01, label='Resample Denoising Strength', elem_id='bmab_resample_denoising')
elem += gr.Slider(minimum=0.0, maximum=2, value=0.5, step=0.05, label='Resample strength', elem_id='bmab_resample_cn_strength')
elem += gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, label='Resample begin', elem_id='bmab_resample_cn_begin')
elem += gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.01, label='Resample end', elem_id='bmab_resample_cn_end')
with gr.Tab('Pretraining', id='bmab_pretraining', elem_id='bmab_pretraining_tabs'):
with gr.Row():
elem += gr.Checkbox(label='Enable pretraining detailer', value=False)
with gr.Row():
elem += gr.Checkbox(label='Enable pretraining before hires.fix', value=False)
with gr.Column(min_width=100):
with gr.Row():
models = ['Select Model']
models.extend(util.list_pretraining_models())
pretraining_models = gr.Dropdown(label='Pretraining Model', visible=True, value=models[0], choices=models, elem_id='bmab_pretraining_models')
elem += pretraining_models
refresh_pretraining_models = ui_components.ToolButton(value='๐', visible=True, interactive=True)
with gr.Row():
elem += gr.Textbox(placeholder='prompt. if empty, use main prompt', lines=3, visible=True, value='', label='Pretraining prompt')
with gr.Row():
elem += gr.Textbox(placeholder='negative prompt. if empty, use main negative prompt', lines=3, visible=True, value='', label='Pretraining negative prompt')
with gr.Row():
with gr.Column(min_width=100):
asamplers = [constants.sampler_default]
asamplers.extend([x.name for x in shared.list_samplers()])
elem += gr.Dropdown(label='Sampling method', visible=True, value=asamplers[0], choices=asamplers)
with gr.Row():
with gr.Column(min_width=100):
elem += gr.Slider(minimum=1, maximum=150, value=20, step=1, label='Pretraining sampling steps', elem_id='bmab_pretraining_steps')
elem += gr.Slider(minimum=1, maximum=30, value=7, step=0.5, label='Pretraining CFG scale', elem_id='bmab_pretraining_cfg_scale')
elem += gr.Slider(minimum=0, maximum=1, value=0.75, step=0.01, label='Pretraining denoising Strength', elem_id='bmab_pretraining_denoising')
elem += gr.Slider(minimum=0, maximum=128, value=4, step=1, label='Pretraining dilation', elem_id='bmab_pretraining_dilation')
elem += gr.Slider(minimum=0.1, maximum=1, value=0.35, step=0.01, label='Pretraining box threshold', elem_id='bmab_pretraining_box_threshold')
with gr.Tab('Edge', elem_id='bmab_edge_tabs'):
with gr.Row():
elem += gr.Checkbox(label='Enable edge enhancement', value=False)
with gr.Row():
elem += gr.Slider(minimum=1, maximum=255, value=50, step=1, label='Edge low threshold')
elem += gr.Slider(minimum=1, maximum=255, value=200, step=1, label='Edge high threshold')
with gr.Row():
elem += gr.Slider(minimum=0, maximum=1, value=0.5, step=0.05, label='Edge strength')
gr.Markdown('')
with gr.Tab('Resize', elem_id='bmab_preprocess_resize_tab'):
with gr.Row():
elem += gr.Checkbox(label='Enable resize (intermediate)', value=False)
with gr.Row():
elem += gr.Checkbox(label='Resized by person', value=True)
with gr.Row():
gr.HTML(constants.resize_description)
with gr.Row():
with gr.Column():
methods = ['stretching', 'inpaint', 'inpaint+lama', 'inpaint_only', 'inpaint_only+lama']
elem += gr.Dropdown(label='Method', visible=True, value=methods[0], choices=methods)
with gr.Column():
align = [x for x in util.alignment.keys()]
elem += gr.Dropdown(label='Alignment', visible=True, value=align[4], choices=align)
with gr.Row():
with gr.Column():
dd_resize_filter = gr.Dropdown(label='Resize filter', visible=True, value=filter.filters[0], choices=filter.filters)
elem += dd_resize_filter
with gr.Column():
gr.Markdown('')
with gr.Row():
elem += gr.Slider(minimum=0.10, maximum=0.95, value=0.85, step=0.01, label='Resize by person intermediate')
with gr.Row():
elem += gr.Slider(minimum=0, maximum=1, value=0.75, step=0.01, label='Denoising Strength for inpaint and inpaint+lama', elem_id='bmab_resize_intermediate_denoising')
with gr.Tab('Refiner', id='bmab_refiner', elem_id='bmab_refiner_tabs'):
with gr.Row():
elem += gr.Checkbox(label='Enable refiner', value=False)
with gr.Row():
with gr.Column():
with gr.Row():
checkpoints = [constants.checkpoint_default]
checkpoints.extend([str(x) for x in sd_models.checkpoints_list.keys()])
refiner_models = gr.Dropdown(label='CheckPoint', visible=True, value=checkpoints[0], choices=checkpoints)
elem += refiner_models
refresh_refiner_models = ui_components.ToolButton(value='๐', visible=True, interactive=True)
with gr.Column():
gr.Markdown('')
with gr.Row():
elem += gr.Checkbox(label='Use this checkpoint for detailing(Face, Person, Hand)', value=True)
with gr.Row():
elem += gr.Textbox(placeholder='prompt. if empty, use main prompt', lines=3, visible=True, value='', label='Prompt')
with gr.Row():
elem += gr.Textbox(placeholder='negative prompt. if empty, use main negative prompt', lines=3, visible=True, value='', label='Negative Prompt')
with gr.Row():
with gr.Column(min_width=100):
asamplers = [constants.sampler_default]
asamplers.extend([x.name for x in shared.list_samplers()])
elem += gr.Dropdown(label='Sampling method', visible=True, value=asamplers[0], choices=asamplers)
with gr.Column(min_width=100):
upscalers = [constants.fast_upscaler]
upscalers.extend([x.name for x in shared.sd_upscalers])
elem += gr.Dropdown(label='Upscaler', visible=True, value=upscalers[0], choices=upscalers)
with gr.Row():
with gr.Column(min_width=100):
elem += gr.Slider(minimum=1, maximum=150, value=20, step=1, label='Refiner Sampling Steps', elem_id='bmab_refiner_steps')
elem += gr.Slider(minimum=1, maximum=30, value=7, step=0.5, label='Refiner CFG Scale', elem_id='bmab_refiner_cfg_scale')
elem += gr.Slider(minimum=0, maximum=1, value=0.75, step=0.01, label='Refiner Denoising Strength', elem_id='bmab_refiner_denoising')
with gr.Row():
with gr.Column(min_width=100):
elem += gr.Slider(minimum=0, maximum=4, value=1, step=0.1, label='Refiner Scale', elem_id='bmab_refiner_scale')
elem += gr.Slider(minimum=0, maximum=2048, value=0, step=1, label='Refiner Width', elem_id='bmab_refiner_width')
elem += gr.Slider(minimum=0, maximum=2048, value=0, step=1, label='Refiner Height', elem_id='bmab_refiner_height')
with gr.Accordion(f'BMAB', open=False):
with gr.Row():
with gr.Tabs(elem_id='bmab_tabs'):
with gr.Tab('Basic', elem_id='bmab_basic_tabs'):
with gr.Row():
with gr.Column():
elem += gr.Slider(minimum=0, maximum=2, value=1, step=0.05, label='Contrast')
elem += gr.Slider(minimum=0, maximum=2, value=1, step=0.05, label='Brightness')
elem += gr.Slider(minimum=-5, maximum=5, value=1, step=0.1, label='Sharpeness')
elem += gr.Slider(minimum=0, maximum=2, value=1, step=0.01, label='Color')
with gr.Column():
elem += gr.Slider(minimum=-2000, maximum=+2000, value=0, step=1, label='Color temperature')
elem += gr.Slider(minimum=0, maximum=1, value=0, step=0.05, label='Noise alpha')
elem += gr.Slider(minimum=0, maximum=1, value=0, step=0.05, label='Noise alpha at final stage')
with gr.Tab('Imaging', elem_id='bmab_imaging_tabs'):
with gr.Row():
elem += gr.Image(source='upload', type='pil')
with gr.Row():
elem += gr.Checkbox(label='Blend enabled', value=False)
with gr.Row():
with gr.Column():
elem += gr.Slider(minimum=0, maximum=1, value=1, step=0.05, label='Blend alpha')
with gr.Column():
gr.Markdown('')
with gr.Row():
elem += gr.Checkbox(label='Enable detect', value=False)
with gr.Row():
elem += gr.Textbox(placeholder='1girl', visible=True, value='', label='Prompt')
with gr.Tab('Person', elem_id='bmab_person_tabs'):
with gr.Row():
elem += gr.Checkbox(label='Enable person detailing for landscape', value=False)
with gr.Row():
elem += gr.Checkbox(label='Enable best quality (EXPERIMENTAL, Use more GPU)', value=False)
elem += gr.Checkbox(label='Force upscale ratio 1:1 without area limit', value=False)
with gr.Row():
elem += gr.Checkbox(label='Block over-scaled image', value=True)
elem += gr.Checkbox(label='Auto Upscale if Block over-scaled image enabled', value=True)
with gr.Row():
with gr.Column(min_width=100):
elem += gr.Slider(minimum=0.1, maximum=8, value=4, step=0.01, label='Upscale Ratio')
elem += gr.Slider(minimum=0, maximum=20, value=3, step=1, label='Dilation mask')
elem += gr.Slider(minimum=0.01, maximum=1, value=0.1, step=0.01, label='Large person area limit')
elem += gr.Slider(minimum=0, maximum=20, value=1, step=1, label='Limit')
elem += gr.Slider(minimum=0, maximum=2, value=1, step=0.01, visible=shared.opts.data.get('bmab_test_function', False), label='Background color (HIDDEN)')
elem += gr.Slider(minimum=0, maximum=30, value=0, step=1, visible=shared.opts.data.get('bmab_test_function', False), label='Background blur (HIDDEN)')
with gr.Column(min_width=100):
elem += gr.Slider(minimum=0, maximum=1, value=0.4, step=0.01, label='Denoising Strength')
elem += gr.Slider(minimum=1, maximum=30, value=7, step=0.5, label='CFG Scale')
gr.Markdown('')
with gr.Tab('Face', elem_id='bmab_face_tabs'):
with gr.Row():
elem += gr.Checkbox(label='Enable face detailing', value=False)
with gr.Row():
elem += gr.Checkbox(label='Enable face detailing before hires.fix', value=False)
with gr.Row():
elem += gr.Checkbox(label='Disable extra networks in prompt (LORA, Hypernetwork, ...)', value=False)
with gr.Row():
with gr.Column(min_width=100):
elem += gr.Dropdown(label='Face detailing sort by', choices=['Score', 'Size', 'Left', 'Right', 'Center'], type='value', value='Score')
with gr.Column(min_width=100):
elem += gr.Slider(minimum=0, maximum=20, value=1, step=1, label='Limit')
with gr.Tab('Face1', elem_id='bmab_face1_tabs'):
with gr.Row():
elem += gr.Textbox(placeholder='prompt. if empty, use main prompt', lines=3, visible=True, value='', label='Prompt')
with gr.Row():
elem += gr.Textbox(placeholder='negative prompt. if empty, use main negative prompt', lines=3, visible=True, value='', label='Negative Prompt')
with gr.Tab('Face2', elem_id='bmab_face2_tabs'):
with gr.Row():
elem += gr.Textbox(placeholder='prompt. if empty, use main prompt', lines=3, visible=True, value='', label='Prompt')
with gr.Row():
elem += gr.Textbox(placeholder='negative prompt. if empty, use main negative prompt', lines=3, visible=True, value='', label='Negative Prompt')
with gr.Tab('Face3', elem_id='bmab_face3_tabs'):
with gr.Row():
elem += gr.Textbox(placeholder='prompt. if empty, use main prompt', lines=3, visible=True, value='', label='Prompt')
with gr.Row():
elem += gr.Textbox(placeholder='negative prompt. if empty, use main negative prompt', lines=3, visible=True, value='', label='Negative Prompt')
with gr.Tab('Face4', elem_id='bmab_face4_tabs'):
with gr.Row():
elem += gr.Textbox(placeholder='prompt. if empty, use main prompt', lines=3, visible=True, value='', label='Prompt')
with gr.Row():
elem += gr.Textbox(placeholder='negative prompt. if empty, use main negative prompt', lines=3, visible=True, value='', label='Negative Prompt')
with gr.Tab('Face5', elem_id='bmab_face5_tabs'):
with gr.Row():
elem += gr.Textbox(placeholder='prompt. if empty, use main prompt', lines=3, visible=True, value='', label='Prompt')
with gr.Row():
elem += gr.Textbox(placeholder='negative prompt. if empty, use main negative prompt', lines=3, visible=True, value='', label='Negative Prompt')
with gr.Row():
with gr.Tab('Parameters', elem_id='bmab_parameter_tabs'):
with gr.Row():
elem += gr.Checkbox(label='Overide Parameters', value=False)
with gr.Row():
with gr.Column(min_width=100):
elem += gr.Slider(minimum=64, maximum=2048, value=512, step=8, label='Width')
elem += gr.Slider(minimum=64, maximum=2048, value=512, step=8, label='Height')
with gr.Column(min_width=100):
elem += gr.Slider(minimum=1, maximum=30, value=7, step=0.5, label='CFG Scale')
elem += gr.Slider(minimum=1, maximum=150, value=20, step=1, label='Steps')
elem += gr.Slider(minimum=0, maximum=64, value=4, step=1, label='Mask Blur')
with gr.Row():
with gr.Column(min_width=100):
asamplers = [constants.sampler_default]
asamplers.extend([x.name for x in shared.list_samplers()])
elem += gr.Dropdown(label='Sampler', visible=True, value=asamplers[0], choices=asamplers)
inpaint_area = gr.Radio(label='Inpaint area', choices=['Whole picture', 'Only masked'], type='value', value='Only masked')
elem += inpaint_area
elem += gr.Slider(label='Only masked padding, pixels', minimum=0, maximum=256, step=4, value=32)
choices = detectors.list_face_detectors()
elem += gr.Dropdown(label='Detection Model', choices=choices, type='value', value=choices[0])
with gr.Column():
elem += gr.Slider(minimum=0, maximum=1, value=0.4, step=0.01, label='Face Denoising Strength', elem_id='bmab_face_denoising_strength')
elem += gr.Slider(minimum=0, maximum=64, value=4, step=1, label='Face Dilation', elem_id='bmab_face_dilation')
elem += gr.Slider(minimum=0.1, maximum=1, value=0.35, step=0.01, label='Face Box threshold')
elem += gr.Checkbox(label='Skip face detailing by area', value=False)
elem += gr.Slider(minimum=0.0, maximum=3.0, value=0.26, step=0.01, label='Face area (MegaPixel)')
with gr.Tab('Hand', elem_id='bmab_hand_tabs'):
with gr.Row():
elem += gr.Checkbox(label='Enable hand detailing (EXPERIMENTAL)', value=False)
elem += gr.Checkbox(label='Block over-scaled image', value=True)
with gr.Row():
elem += gr.Checkbox(label='Enable best quality (EXPERIMENTAL, Use more GPU)', value=False)
with gr.Row():
elem += gr.Dropdown(label='Method', visible=True, interactive=True, value='subframe', choices=['subframe', 'each hand', 'inpaint each hand', 'at once'])
with gr.Row():
elem += gr.Textbox(placeholder='prompt. if empty, use main prompt', lines=3, visible=True, value='', label='Prompt')
with gr.Row():
elem += gr.Textbox(placeholder='negative prompt. if empty, use main negative prompt', lines=3, visible=True, value='', label='Negative Prompt')
with gr.Row():
with gr.Column():
elem += gr.Slider(minimum=0, maximum=1, value=0.4, step=0.01, label='Denoising Strength')
elem += gr.Slider(minimum=1, maximum=30, value=7, step=0.5, label='CFG Scale')
elem += gr.Checkbox(label='Auto Upscale if Block over-scaled image enabled', value=True)
with gr.Column():
elem += gr.Slider(minimum=1, maximum=4, value=2, step=0.01, label='Upscale Ratio')
elem += gr.Slider(minimum=0, maximum=1, value=0.3, step=0.01, label='Box Threshold')
elem += gr.Slider(minimum=0, maximum=0.3, value=0.1, step=0.01, label='Box Dilation')
with gr.Row():
inpaint_area = gr.Radio(label='Inpaint area', choices=['Whole picture', 'Only masked'], type='value', value='Whole picture')
elem += inpaint_area
with gr.Row():
with gr.Column():
elem += gr.Slider(label='Only masked padding, pixels', minimum=0, maximum=256, step=4, value=32)
with gr.Column():
gr.Markdown('')
with gr.Row():
elem += gr.Textbox(placeholder='Additional parameter for advanced user', visible=True, value='', label='Additional Parameter')
with gr.Tab('ControlNet', elem_id='bmab_controlnet_tabs'):
with gr.Row():
elem += gr.Checkbox(label='Enable ControlNet access', value=False)
with gr.Row():
elem += gr.Checkbox(label='Process with BMAB refiner', value=False)
with gr.Row():
with gr.Tab('Noise', elem_id='bmab_cn_noise_tabs'):
with gr.Row():
elem += gr.Checkbox(label='Enable noise', value=False)
with gr.Row():
with gr.Column():
elem += gr.Slider(minimum=0.0, maximum=2, value=0.4, step=0.05, elem_id='bmab_cn_noise', label='Noise strength')
elem += gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, elem_id='bmab_cn_noise_begin', label='Noise begin')
elem += gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.01, elem_id='bmab_cn_noise_end', label='Noise end')
with gr.Column():
gr.Markdown('')
with gr.Accordion(f'BMAB Postprocessor', open=False):
with gr.Row():
with gr.Tab('Resize by person', elem_id='bmab_postprocess_resize_tab'):
with gr.Row():
elem += gr.Checkbox(label='Enable resize by person', value=False)
mode = ['Inpaint', 'ControlNet inpaint+lama']
elem += gr.Dropdown(label='Mode', visible=True, value=mode[0], choices=mode)
with gr.Row():
with gr.Column():
elem += gr.Slider(minimum=0.15, maximum=0.95, value=0.15, step=0.01, label='Resize by person')
with gr.Column():
elem += gr.Slider(minimum=0, maximum=1, value=0.6, step=0.01, label='Denoising Strength for Inpaint, ControlNet')
with gr.Row():
with gr.Column():
gr.Markdown('')
with gr.Column():
elem += gr.Slider(minimum=4, maximum=128, value=30, step=1, label='Mask Dilation')
with gr.Tab('Upscale', elem_id='bmab_postprocess_upscale_tab'):
with gr.Row():
with gr.Column(min_width=100):
elem += gr.Checkbox(label='Enable upscale at final stage', value=False)
elem += gr.Checkbox(label='Detailing after upscale', value=True)
with gr.Column(min_width=100):
gr.Markdown('')
with gr.Row():
with gr.Column(min_width=100):
upscalers = [x.name for x in shared.sd_upscalers]
elem += gr.Dropdown(label='Upscaler', visible=True, value=upscalers[0], choices=upscalers)
elem += gr.Slider(minimum=1, maximum=4, value=1.5, step=0.1, label='Upscale ratio')
with gr.Tab('Filter', id='bmab_final_filter', elem_id='bmab_final_filter_tab'):
with gr.Row():
dd_final_filter = gr.Dropdown(label='Final filter', visible=True, value=filter.filters[0], choices=filter.filters)
elem += dd_final_filter
with gr.Accordion(f'BMAB Config, Preset, Installer', open=False):
with gr.Row():
configs = parameters.Parameters().list_config()
config = '' if not configs else configs[0]
with gr.Tab('Configuration', elem_id='bmab_configuration_tabs'):
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
config_dd = gr.Dropdown(label='Configuration', visible=True, interactive=True, allow_custom_value=True, value=config, choices=configs)
elem += config_dd
load_btn = ui_components.ToolButton('โฌ๏ธ', visible=True, interactive=True, tooltip='load configuration', elem_id='bmab_load_configuration')
save_btn = ui_components.ToolButton('โฌ๏ธ', visible=True, interactive=True, tooltip='save configuration', elem_id='bmab_save_configuration')
reset_btn = ui_components.ToolButton('๐', visible=True, interactive=True, tooltip='reset to default', elem_id='bmab_reset_configuration')
with gr.Column(scale=1):
gr.Markdown('')
with gr.Row():
with gr.Column(scale=1):
btn_reload_filter = gr.Button('reload filter', visible=True, interactive=True, elem_id='bmab_reload_filter')
with gr.Column(scale=1):
gr.Markdown('')
with gr.Column(scale=1):
gr.Markdown('')
with gr.Column(scale=1):
gr.Markdown('')
with gr.Tab('Preset', elem_id='bmab_configuration_tabs'):
with gr.Row():
with gr.Column(min_width=100):
gr.Markdown('Preset Loader : preset override UI configuration.')
with gr.Row():
presets = parameters.Parameters().list_preset()
with gr.Column(min_width=100):
with gr.Row():
preset_dd = gr.Dropdown(label='Preset', visible=True, interactive=True, allow_custom_value=True, value=presets[0], choices=presets)
elem += preset_dd
refresh_btn = ui_components.ToolButton('๐', visible=True, interactive=True, tooltip='refresh preset', elem_id='bmab_preset_refresh')
with gr.Tab('Toy', elem_id='bmab_toy_tabs'):
with gr.Row():
merge_result = gr.Markdown('Result here')
with gr.Row():
random_checkpoint = gr.Button('Merge Random Checkpoint', visible=True, interactive=True, elem_id='bmab_merge_random_checkpoint')
with gr.Tab('Installer', elem_id='bmab_install_tabs'):
with gr.Row():
pkgs = ['GroundingDINO']
dd_pkg = gr.Dropdown(label='Package', visible=True, value=pkgs[0], choices=pkgs)
btn_install = ui_components.ToolButton('๐', visible=True, interactive=True, tooltip='Install package', elem_id='bmab_btn_install')
with gr.Row():
markdown_install = gr.Markdown('')
with gr.Accordion(f'BMAB Testroom', open=False, visible=shared.opts.data.get('bmab_for_developer', False)):
with gr.Row():
gallery = gr.Gallery(label='Images', value=[], elem_id='bmab_testroom_gallery')
result_image = gr.Image(elem_id='bmab_result_image')
with gr.Row():
btn_fetch_images = ui_components.ToolButton('๐', visible=True, interactive=True, tooltip='fetch images', elem_id='bmab_fetch_images')
btn_process_pipeline = ui_components.ToolButton('โถ๏ธ', visible=True, interactive=True, tooltip='fetch images', elem_id='bmab_fetch_images')
gr.Markdown(f'<div style="text-align: right; vertical-align: bottom"><span style="color: green">{bmab_version}</span></div>')
def load_config(*args):
name = args[0]
ret = parameters.Parameters().load_config(name)
return ret
def save_config(*args):
name = parameters.Parameters().get_save_config_name(args)
parameters.Parameters().save_config(args)
return {
config_dd: {
'choices': parameters.Parameters().list_config(),
'value': name,
'__type__': 'update'
}
}
def reset_config(*args):
return parameters.Parameters().get_default()
def refresh_preset(*args):
return {
preset_dd: {
'choices': parameters.Parameters().list_preset(),
'value': 'None',
'__type__': 'update'
}
}
def hit_refiner_model(value, *args):
checkpoints = [constants.checkpoint_default]
checkpoints.extend([str(x) for x in sd_models.checkpoints_list.keys()])
if value not in checkpoints:
value = checkpoints[0]
return {
refiner_models: {
'choices': checkpoints,
'value': value,
'__type__': 'update'
}
}
def hit_pretraining_model(value, *args):
models = ['Select Model']
models.extend(util.list_pretraining_models())
if value not in models:
value = models[0]
return {
pretraining_models: {
'choices': models,
'value': value,
'__type__': 'update'
}
}
def hit_resample_model(value, *args):
checkpoints = [constants.checkpoint_default]
checkpoints.extend([str(x) for x in sd_models.checkpoints_list.keys()])
if value not in checkpoints:
value = checkpoints[0]
return {
resample_models: {
'choices': checkpoints,
'value': value,
'__type__': 'update'
}
}
def hit_resample_vae(value, *args):
vaes = [constants.vae_default]
vaes.extend([str(x) for x in sd_vae.vae_dict.keys()])
if value not in vaes:
value = vaes[0]
return {
resample_vaes: {
'choices': vaes,
'value': value,
'__type__': 'update'
}
}
def hit_checkpoint_model(value, *args):
checkpoints = [constants.checkpoint_default]
checkpoints.extend([str(x) for x in sd_models.checkpoints_list.keys()])
if value not in checkpoints:
value = checkpoints[0]
return {
checkpoint_models: {
'choices': checkpoints,
'value': value,
'__type__': 'update'
}
}
def hit_vae_models(value, *args):
vaes = [constants.vae_default]
vaes.extend([str(x) for x in sd_vae.vae_dict.keys()])
if value not in vaes:
value = vaes[0]
return {
vaes_models: {
'choices': vaes,
'value': value,
'__type__': 'update'
}
}
def merge_random_checkpoint(*args):
def find_random(k, f):
for v in k:
if v.startswith(f):
return v
result = ''
checkpoints = [str(x) for x in sd_models.checkpoints_list.keys()]
target = random.choices(checkpoints, k=3)
multiplier = random.randrange(10, 90, 1) / 100
index = random.randrange(0x10000000, 0xFFFFFFFF, 1)
output = f'bmab_random_{format(index, "08X")}'
extras.run_modelmerger(None, target[0], target[1], target[2], 'Weighted sum', multiplier, False, output, 'safetensors', 0, None, '', True, True, True, '{}')
result += f'{output}.safetensors generated<br>'
for x in range(1, random.randrange(0, 5, 1)):
checkpoints = [str(x) for x in sd_models.checkpoints_list.keys()]
br = find_random(checkpoints, f'{output}.safetensors')
if br is None:
return
index = random.randrange(0x10000000, 0xFFFFFFFF, 1)
output = f'bmab_random_{format(index, "08X")}'
target = random.choices(checkpoints, k=2)
multiplier = random.randrange(10, 90, 1) / 100
extras.run_modelmerger(None, br, target[0], target[1], 'Weighted sum', multiplier, False, output, 'safetensors', 0, None, '', True, True, True, '{}')
result += f'{output}.safetensors generated<br>'
debug_print('done')
return {
merge_result: {
'value': result,
'__type__': 'update'
}
}
def fetch_images(*args):
global gallery_select_index
gallery_select_index = 0
return {
gallery: {
'value': final_images,
'__type__': 'update'
}
}
def process_pipeline(*args):
config, a = parameters.parse_args(args)
preview = final_images[gallery_select_index]
p = last_process
ctx = context.Context.newContext(bmab_script, p, a, gallery_select_index)
preview = pipeline.process(ctx, preview)
images.save_image(
preview, p.outpath_samples, '',
p.all_seeds[gallery_select_index], p.all_prompts[gallery_select_index],
shared.opts.samples_format, p=p, suffix="-testroom")
return {
result_image: {
'value': preview,
'__type__': 'update'
}
}
def reload_filter(f1, f2, f3, f4, f5, *args):
filter.reload_filters()
return {
dd_hiresfix_filter1: {
'choices': filter.filters,
'value': f1,
'__type__': 'update'
},
dd_hiresfix_filter2: {
'choices': filter.filters,
'value': f2,
'__type__': 'update'
},
dd_resample_filter: {
'choices': filter.filters,
'value': f3,
'__type__': 'update'
},
dd_resize_filter: {
'choices': filter.filters,
'value': f4,
'__type__': 'update'
},
dd_final_filter: {
'choices': filter.filters,
'value': f5,
'__type__': 'update'
}
}
def image_selected(data: gr.SelectData, *args):
debug_print(data.index)
global gallery_select_index
gallery_select_index = data.index
def hit_install(*args):
pkg_name = args[0]
if pkg_name == 'GroundingDINO':
installer.install_groudingdino()
msg = f'{pkg_name} installed'
else:
msg = 'Nothing installed.'
return {
markdown_install: {
'value': msg,
'__type__': 'update'
}
}
def stop_process(*args):
bscript.stop_generation = True
gr.Info('Waiting for processing done.')
load_btn.click(load_config, inputs=[config_dd], outputs=elem)
save_btn.click(save_config, inputs=elem, outputs=[config_dd])
reset_btn.click(reset_config, outputs=elem)
refresh_btn.click(refresh_preset, outputs=elem)
refresh_refiner_models.click(hit_refiner_model, inputs=[refiner_models], outputs=[refiner_models])
refresh_pretraining_models.click(hit_pretraining_model, inputs=[pretraining_models], outputs=[pretraining_models])
refresh_resample_models.click(hit_resample_model, inputs=[resample_models], outputs=[resample_models])
refresh_resample_vaes.click(hit_resample_vae, inputs=[resample_vaes], outputs=[resample_vaes])
refresh_checkpoint_models.click(hit_checkpoint_model, inputs=[checkpoint_models], outputs=[checkpoint_models])
refresh_vae_models.click(hit_vae_models, inputs=[vaes_models], outputs=[vaes_models])
random_checkpoint.click(merge_random_checkpoint, outputs=[merge_result])
btn_fetch_images.click(fetch_images, outputs=[gallery])
btn_reload_filter.click(reload_filter, inputs=[dd_hiresfix_filter1, dd_hiresfix_filter2, dd_resample_filter, dd_resize_filter, dd_final_filter], outputs=[dd_hiresfix_filter1, dd_hiresfix_filter2, dd_resample_filter, dd_resize_filter, dd_final_filter])
btn_process_pipeline.click(process_pipeline, inputs=elem, outputs=[result_image])
gallery.select(image_selected, inputs=[gallery])
btn_install.click(hit_install, inputs=[dd_pkg], outputs=[markdown_install])
btn_stop.click(stop_process)
return elem
def on_ui_settings():
shared.opts.add_option('bmab_debug_print', shared.OptionInfo(False, 'Print debug message.', section=('bmab', 'BMAB')))
shared.opts.add_option('bmab_debug_logging', shared.OptionInfo(False, 'Enable developer logging.', section=('bmab', 'BMAB')))
shared.opts.add_option('bmab_show_extends', shared.OptionInfo(False, 'Show before processing image. (DO NOT ENABLE IN CLOUD)', section=('bmab', 'BMAB')))
shared.opts.add_option('bmab_test_function', shared.OptionInfo(False, 'Show Test Function', section=('bmab', 'BMAB')))
shared.opts.add_option('bmab_keep_original_setting', shared.OptionInfo(False, 'Keep original setting', section=('bmab', 'BMAB')))
shared.opts.add_option('bmab_save_image_before_process', shared.OptionInfo(False, 'Save image that before processing', section=('bmab', 'BMAB')))
shared.opts.add_option('bmab_save_image_after_process', shared.OptionInfo(False, 'Save image that after processing (some bugs)', section=('bmab', 'BMAB')))
shared.opts.add_option('bmab_for_developer', shared.OptionInfo(False, 'Show developer hidden function.', section=('bmab', 'BMAB')))
shared.opts.add_option('bmab_use_dino_predict', shared.OptionInfo(False, 'Use GroudingDINO for detecting hand. GroudingDINO should be installed manually.', section=('bmab', 'BMAB')))
shared.opts.add_option('bmab_max_detailing_element', shared.OptionInfo(
default=0, label='Max Detailing Element', component=gr.Slider, component_args={'minimum': 0, 'maximum': 10, 'step': 1}, section=('bmab', 'BMAB')))
shared.opts.add_option('bmab_detail_full', shared.OptionInfo(True, 'Allways use FULL, VAE type for encode when detail anything. (v1.6.0)', section=('bmab', 'BMAB')))
shared.opts.add_option('bmab_optimize_vram', shared.OptionInfo(default='None', label='Checkpoint for Person, Face, Hand', component=gr.Radio, component_args={'choices': ['None', 'low vram', 'med vram']}, section=('bmab', 'BMAB')))
mask_names = masking.list_mask_names()
shared.opts.add_option('bmab_mask_model', shared.OptionInfo(default=mask_names[0], label='Masking model', component=gr.Radio, component_args={'choices': mask_names}, section=('bmab', 'BMAB')))
shared.opts.add_option('bmab_use_specific_model', shared.OptionInfo(False, 'Use specific model', section=('bmab', 'BMAB')))
shared.opts.add_option('bmab_model', shared.OptionInfo(default='', label='Checkpoint for Person, Face, Hand', component=gr.Textbox, component_args='', section=('bmab', 'BMAB')))
shared.opts.add_option('bmab_cn_openpose', shared.OptionInfo(default='control_v11p_sd15_openpose_fp16 [73c2b67d]', label='ControlNet openpose model', component=gr.Textbox, component_args='', section=('bmab', 'BMAB')))
shared.opts.add_option('bmab_cn_lineart', shared.OptionInfo(default='control_v11p_sd15_lineart [43d4be0d]', label='ControlNet lineart model', component=gr.Textbox, component_args='', section=('bmab', 'BMAB')))
shared.opts.add_option('bmab_cn_inpaint', shared.OptionInfo(default='control_v11p_sd15_inpaint_fp16 [be8bc0ed]', label='ControlNet inpaint model', component=gr.Textbox, component_args='', section=('bmab', 'BMAB')))
shared.opts.add_option('bmab_cn_tile_resample', shared.OptionInfo(default='control_v11f1e_sd15_tile_fp16 [3b860298]', label='ControlNet tile model', component=gr.Textbox, component_args='', section=('bmab', 'BMAB')))
|