Upload 13 files
Browse files- 1_Pooling/config.json +10 -0
- README.md +268 -3
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +9 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,268 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- setfit
|
4 |
+
- absa
|
5 |
+
- sentence-transformers
|
6 |
+
- text-classification
|
7 |
+
- generated_from_setfit_trainer
|
8 |
+
widget:
|
9 |
+
- text: Edelweiss:Downgrade Wipro to 'Hold', says Edelweiss
|
10 |
+
- text: Overweight:Morgan Stanley upgrades Axis Bank to Overweight; ups target price
|
11 |
+
- text: 'downside:Expect more downside in the IT, pharma stocks: Sandeep Wagle'
|
12 |
+
- text: 'Barclays:Infusion of additional $1 trillion to India''s GDP to create new
|
13 |
+
midcap leaders: Barclays'
|
14 |
+
- text: focus:Jaypee, Reliance Group stocks in focus ahead of UP results
|
15 |
+
metrics:
|
16 |
+
- accuracy
|
17 |
+
pipeline_tag: text-classification
|
18 |
+
library_name: setfit
|
19 |
+
inference: false
|
20 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2
|
24 |
+
|
25 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
|
26 |
+
|
27 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
28 |
+
|
29 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
30 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
31 |
+
|
32 |
+
This model was trained within the context of a larger system for ABSA, which looks like so:
|
33 |
+
|
34 |
+
1. Use a spaCy model to select possible aspect span candidates.
|
35 |
+
2. **Use this SetFit model to filter these possible aspect span candidates.**
|
36 |
+
3. Use a SetFit model to classify the filtered aspect span candidates.
|
37 |
+
|
38 |
+
## Model Details
|
39 |
+
|
40 |
+
### Model Description
|
41 |
+
- **Model Type:** SetFit
|
42 |
+
- **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
|
43 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
44 |
+
- **spaCy Model:** en_core_web_sm
|
45 |
+
- **SetFitABSA Aspect Model:** [/scratch/project_2006600/fin_experiment/models/setfit-finance-aspect](https://huggingface.co//scratch/project_2006600/fin_experiment/models/setfit-finance-aspect)
|
46 |
+
- **SetFitABSA Polarity Model:** [/scratch/project_2006600/fin_experiment/models/setfit-finance-polarity](https://huggingface.co//scratch/project_2006600/fin_experiment/models/setfit-finance-polarity)
|
47 |
+
- **Maximum Sequence Length:** 256 tokens
|
48 |
+
- **Number of Classes:** 2 classes
|
49 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
50 |
+
<!-- - **Language:** Unknown -->
|
51 |
+
<!-- - **License:** Unknown -->
|
52 |
+
|
53 |
+
### Model Sources
|
54 |
+
|
55 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
56 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
57 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
58 |
+
|
59 |
+
### Model Labels
|
60 |
+
| Label | Examples |
|
61 |
+
|:----------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
62 |
+
| aspect | <ul><li>'Sebi:Ponzi schemes: Sebi seeks quarterly meetings of state panels'</li><li>'Vodafone:European shares steady, pegged back by Vodafone'</li><li>'European shares:European shares steady, pegged back by Vodafone'</li></ul> |
|
63 |
+
| no aspect | <ul><li>'Ponzi schemes:Ponzi schemes: Sebi seeks quarterly meetings of state panels'</li><li>'meetings:Ponzi schemes: Sebi seeks quarterly meetings of state panels'</li><li>'state panels:Ponzi schemes: Sebi seeks quarterly meetings of state panels'</li></ul> |
|
64 |
+
|
65 |
+
## Uses
|
66 |
+
|
67 |
+
### Direct Use for Inference
|
68 |
+
|
69 |
+
First install the SetFit library:
|
70 |
+
|
71 |
+
```bash
|
72 |
+
pip install setfit
|
73 |
+
```
|
74 |
+
|
75 |
+
Then you can load this model and run inference.
|
76 |
+
|
77 |
+
```python
|
78 |
+
from setfit import AbsaModel
|
79 |
+
|
80 |
+
# Download from the 🤗 Hub
|
81 |
+
model = AbsaModel.from_pretrained(
|
82 |
+
"/scratch/project_2006600/fin_experiment/models/setfit-finance-aspect",
|
83 |
+
"/scratch/project_2006600/fin_experiment/models/setfit-finance-polarity",
|
84 |
+
)
|
85 |
+
# Run inference
|
86 |
+
preds = model("The food was great, but the venue is just way too busy.")
|
87 |
+
```
|
88 |
+
|
89 |
+
<!--
|
90 |
+
### Downstream Use
|
91 |
+
|
92 |
+
*List how someone could finetune this model on their own dataset.*
|
93 |
+
-->
|
94 |
+
|
95 |
+
<!--
|
96 |
+
### Out-of-Scope Use
|
97 |
+
|
98 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
99 |
+
-->
|
100 |
+
|
101 |
+
<!--
|
102 |
+
## Bias, Risks and Limitations
|
103 |
+
|
104 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
105 |
+
-->
|
106 |
+
|
107 |
+
<!--
|
108 |
+
### Recommendations
|
109 |
+
|
110 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
111 |
+
-->
|
112 |
+
|
113 |
+
## Training Details
|
114 |
+
|
115 |
+
### Training Set Metrics
|
116 |
+
| Training set | Min | Median | Max |
|
117 |
+
|:-------------|:----|:--------|:----|
|
118 |
+
| Word count | 4 | 10.9446 | 24 |
|
119 |
+
|
120 |
+
| Label | Training Sample Count |
|
121 |
+
|:----------|:----------------------|
|
122 |
+
| no aspect | 3387 |
|
123 |
+
| aspect | 1988 |
|
124 |
+
|
125 |
+
### Training Hyperparameters
|
126 |
+
- batch_size: (64, 64)
|
127 |
+
- num_epochs: (2, 2)
|
128 |
+
- max_steps: -1
|
129 |
+
- sampling_strategy: oversampling
|
130 |
+
- body_learning_rate: (2e-05, 1e-05)
|
131 |
+
- head_learning_rate: 0.01
|
132 |
+
- loss: CosineSimilarityLoss
|
133 |
+
- distance_metric: cosine_distance
|
134 |
+
- margin: 0.25
|
135 |
+
- end_to_end: False
|
136 |
+
- use_amp: True
|
137 |
+
- warmup_proportion: 0.1
|
138 |
+
- l2_weight: 0.01
|
139 |
+
- seed: 42
|
140 |
+
- eval_max_steps: -1
|
141 |
+
- load_best_model_at_end: True
|
142 |
+
|
143 |
+
### Training Results
|
144 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
145 |
+
|:------:|:----:|:-------------:|:---------------:|
|
146 |
+
| 0.0000 | 1 | 0.3294 | - |
|
147 |
+
| 0.0004 | 50 | 0.3505 | - |
|
148 |
+
| 0.0008 | 100 | 0.3428 | 0.3418 |
|
149 |
+
| 0.0012 | 150 | 0.3407 | - |
|
150 |
+
| 0.0017 | 200 | 0.3284 | 0.3288 |
|
151 |
+
| 0.0021 | 250 | 0.3232 | - |
|
152 |
+
| 0.0025 | 300 | 0.3092 | 0.3087 |
|
153 |
+
| 0.0029 | 350 | 0.3047 | - |
|
154 |
+
| 0.0033 | 400 | 0.2906 | 0.2849 |
|
155 |
+
| 0.0037 | 450 | 0.2782 | - |
|
156 |
+
| 0.0041 | 500 | 0.2695 | 0.2667 |
|
157 |
+
| 0.0046 | 550 | 0.2625 | - |
|
158 |
+
| 0.0050 | 600 | 0.2601 | 0.2574 |
|
159 |
+
| 0.0054 | 650 | 0.2541 | - |
|
160 |
+
| 0.0058 | 700 | 0.2554 | 0.2539 |
|
161 |
+
| 0.0062 | 750 | 0.2552 | - |
|
162 |
+
| 0.0066 | 800 | 0.2537 | 0.2529 |
|
163 |
+
| 0.0071 | 850 | 0.2555 | - |
|
164 |
+
| 0.0075 | 900 | 0.2544 | 0.2518 |
|
165 |
+
| 0.0079 | 950 | 0.2528 | - |
|
166 |
+
| 0.0083 | 1000 | 0.2536 | 0.2506 |
|
167 |
+
| 0.0087 | 1050 | 0.251 | - |
|
168 |
+
| 0.0091 | 1100 | 0.2508 | 0.2493 |
|
169 |
+
| 0.0095 | 1150 | 0.2504 | - |
|
170 |
+
| 0.0100 | 1200 | 0.2497 | 0.2480 |
|
171 |
+
| 0.0104 | 1250 | 0.2484 | - |
|
172 |
+
| 0.0108 | 1300 | 0.2476 | 0.2463 |
|
173 |
+
| 0.0112 | 1350 | 0.2468 | - |
|
174 |
+
| 0.0116 | 1400 | 0.2454 | 0.2440 |
|
175 |
+
| 0.0120 | 1450 | 0.245 | - |
|
176 |
+
| 0.0124 | 1500 | 0.2427 | 0.2409 |
|
177 |
+
| 0.0129 | 1550 | 0.2401 | - |
|
178 |
+
| 0.0133 | 1600 | 0.2412 | 0.2361 |
|
179 |
+
| 0.0137 | 1650 | 0.2373 | - |
|
180 |
+
| 0.0141 | 1700 | 0.2325 | 0.2279 |
|
181 |
+
| 0.0145 | 1750 | 0.2305 | - |
|
182 |
+
| 0.0149 | 1800 | 0.2245 | 0.2144 |
|
183 |
+
| 0.0153 | 1850 | 0.2186 | - |
|
184 |
+
| 0.0158 | 1900 | 0.2089 | 0.1916 |
|
185 |
+
| 0.0162 | 1950 | 0.1935 | - |
|
186 |
+
| 0.0166 | 2000 | 0.1761 | 0.1500 |
|
187 |
+
| 0.0170 | 2050 | 0.1477 | - |
|
188 |
+
| 0.0174 | 2100 | 0.1395 | 0.1287 |
|
189 |
+
| 0.0178 | 2150 | 0.1315 | - |
|
190 |
+
| 0.0183 | 2200 | 0.1231 | 0.1178 |
|
191 |
+
| 0.0187 | 2250 | 0.1172 | - |
|
192 |
+
| 0.0191 | 2300 | 0.1082 | 0.1085 |
|
193 |
+
| 0.0195 | 2350 | 0.1005 | - |
|
194 |
+
| 0.0199 | 2400 | 0.0999 | 0.1058 |
|
195 |
+
| 0.0203 | 2450 | 0.0881 | - |
|
196 |
+
| 0.0207 | 2500 | 0.0899 | 0.1009 |
|
197 |
+
| 0.0212 | 2550 | 0.0851 | - |
|
198 |
+
| 0.0216 | 2600 | 0.0829 | 0.0986 |
|
199 |
+
| 0.0220 | 2650 | 0.0779 | - |
|
200 |
+
| 0.0224 | 2700 | 0.0773 | 0.0968 |
|
201 |
+
| 0.0228 | 2750 | 0.0731 | - |
|
202 |
+
| 0.0232 | 2800 | 0.0687 | 0.0944 |
|
203 |
+
| 0.0236 | 2850 | 0.0673 | - |
|
204 |
+
| 0.0241 | 2900 | 0.0667 | 0.0934 |
|
205 |
+
| 0.0245 | 2950 | 0.0617 | - |
|
206 |
+
| 0.0249 | 3000 | 0.0619 | 0.0928 |
|
207 |
+
| 0.0253 | 3050 | 0.0577 | - |
|
208 |
+
| 0.0257 | 3100 | 0.0559 | 0.0927 |
|
209 |
+
| 0.0261 | 3150 | 0.0588 | - |
|
210 |
+
| 0.0265 | 3200 | 0.0557 | 0.0939 |
|
211 |
+
| 0.0270 | 3250 | 0.0526 | - |
|
212 |
+
| 0.0274 | 3300 | 0.0519 | 0.0913 |
|
213 |
+
| 0.0278 | 3350 | 0.0498 | - |
|
214 |
+
| 0.0282 | 3400 | 0.0454 | 0.0902 |
|
215 |
+
| 0.0286 | 3450 | 0.0442 | - |
|
216 |
+
| 0.0290 | 3500 | 0.0425 | 0.0892 |
|
217 |
+
| 0.0295 | 3550 | 0.0391 | - |
|
218 |
+
| 0.0299 | 3600 | 0.0369 | 0.0879 |
|
219 |
+
| 0.0303 | 3650 | 0.0384 | - |
|
220 |
+
| 0.0307 | 3700 | 0.033 | 0.0890 |
|
221 |
+
| 0.0311 | 3750 | 0.0341 | - |
|
222 |
+
| 0.0315 | 3800 | 0.0364 | 0.0896 |
|
223 |
+
| 0.0319 | 3850 | 0.0347 | - |
|
224 |
+
| 0.0324 | 3900 | 0.0321 | 0.0891 |
|
225 |
+
|
226 |
+
### Framework Versions
|
227 |
+
- Python: 3.11.11
|
228 |
+
- SetFit: 1.1.0
|
229 |
+
- Sentence Transformers: 3.3.1
|
230 |
+
- spaCy: 3.7.5
|
231 |
+
- Transformers: 4.42.1
|
232 |
+
- PyTorch: 2.5.1+cu124
|
233 |
+
- Datasets: 3.2.0
|
234 |
+
- Tokenizers: 0.19.1
|
235 |
+
|
236 |
+
## Citation
|
237 |
+
|
238 |
+
### BibTeX
|
239 |
+
```bibtex
|
240 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
241 |
+
doi = {10.48550/ARXIV.2209.11055},
|
242 |
+
url = {https://arxiv.org/abs/2209.11055},
|
243 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
244 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
245 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
246 |
+
publisher = {arXiv},
|
247 |
+
year = {2022},
|
248 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
249 |
+
}
|
250 |
+
```
|
251 |
+
|
252 |
+
<!--
|
253 |
+
## Glossary
|
254 |
+
|
255 |
+
*Clearly define terms in order to be accessible across audiences.*
|
256 |
+
-->
|
257 |
+
|
258 |
+
<!--
|
259 |
+
## Model Card Authors
|
260 |
+
|
261 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
262 |
+
-->
|
263 |
+
|
264 |
+
<!--
|
265 |
+
## Model Card Contact
|
266 |
+
|
267 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
268 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.42.1",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.42.1",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"span_context": 0,
|
3 |
+
"spacy_model": "en_core_web_sm",
|
4 |
+
"normalize_embeddings": false,
|
5 |
+
"labels": [
|
6 |
+
"no aspect",
|
7 |
+
"aspect"
|
8 |
+
]
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f7241887e38f04c953c97a748c8d2dbf515b78010cafdfc024ca4d155a4df7b
|
3 |
+
size 90864192
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:043d1eef77de7f112a8b7de534e78a3b95e759005ab0444a1200a61c3c0bfa44
|
3 |
+
size 3919
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 256,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|