tingyuansen
commited on
Commit
•
a452571
1
Parent(s):
26fdd0d
Update README.md
Browse files
README.md
CHANGED
@@ -1,201 +1,98 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
- **
|
23 |
-
- **
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
tags:
|
7 |
+
- llama-2
|
8 |
+
- astronomy
|
9 |
+
- astrophysics
|
10 |
+
- arxiv
|
11 |
+
inference: false
|
12 |
+
base_model:
|
13 |
+
- meta-llama/Llama-2-7b-hf
|
14 |
---
|
15 |
|
16 |
+
# AstroLLaMA-2-7B-Chat_AIC
|
|
|
|
|
17 |
|
18 |
+
AstroLLaMA-2-7B-Chat_AIC is a specialized chat model for astronomy, developed by fine-tuning the AstroLLaMA-2-7B-Base_AIC model. This model was originally developed by the AstroLLaMA team as part of the UniverseTBD initiative. It is designed for instruction-following and chat-based interactions in the astronomy domain.
|
19 |
|
20 |
+
**Note**: This model is provided for completeness in the series of AstroLLaMA models. The core AstroLLaMA team has since moved on to develop more advanced models under AstroMLab. For the original UniverseTBD version, please visit [their repository](https://huggingface.co/universeTBD/astrollama-7b-chat-alpha).
|
21 |
|
22 |
## Model Details
|
23 |
|
24 |
+
- **Base Architecture**: LLaMA-2-7b
|
25 |
+
- **Base Model**: AstroLLaMA-2-7B-Base_AIC (trained on Abstract, Introduction, and Conclusion sections from arXiv's astro-ph category papers)
|
26 |
+
- **Fine-tuning Method**: Supervised Fine-Tuning (SFT)
|
27 |
+
- **SFT Dataset**:
|
28 |
+
- 10,356 astronomy-centered conversations generated from arXiv abstracts by GPT-4
|
29 |
+
- Full content of LIMA dataset
|
30 |
+
- 10,000 samples from Open Orca dataset
|
31 |
+
- 10,000 samples from UltraChat dataset
|
32 |
+
- **Primary Use**: Instruction-following and chat-based interactions for astronomy-related queries
|
33 |
+
- **Reference**: [Perkowski et al. 2024](https://arxiv.org/abs/2401.01916)
|
34 |
+
|
35 |
+
## Using the model for chat
|
36 |
+
|
37 |
+
```python
|
38 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
39 |
+
import torch
|
40 |
+
|
41 |
+
# Load the model and tokenizer
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained("AstroMLab/astrollama-2-7b-chat_aic")
|
43 |
+
model = AutoModelForCausalLM.from_pretrained("AstroMLab/astrollama-2-7b-chat_aic", device_map="auto")
|
44 |
+
|
45 |
+
# Function to generate a response
|
46 |
+
def generate_response(prompt, max_length=512):
|
47 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=max_length)
|
48 |
+
inputs = inputs.to(model.device)
|
49 |
+
|
50 |
+
# Generate a response
|
51 |
+
with torch.no_grad():
|
52 |
+
outputs = model.generate(**inputs, max_length=max_length, num_return_sequences=1, do_sample=True)
|
53 |
+
|
54 |
+
# Decode and return the response
|
55 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
56 |
+
return response
|
57 |
+
|
58 |
+
# Example conversation
|
59 |
+
user_input = "What are the main components of a galaxy?"
|
60 |
+
prompt = f"Human: {user_input}\n\nAssistant:"
|
61 |
+
|
62 |
+
response = generate_response(prompt)
|
63 |
+
print(response)
|
64 |
+
```
|
65 |
+
|
66 |
+
## Model Limitations and Biases
|
67 |
+
|
68 |
+
This model is specifically trained on astronomy literature and conversation data, and may not generalize well to other domains. Users should be aware of potential biases in the training data, which may reflect historical trends and biases in astronomical research publications and the datasets used for fine-tuning.
|
69 |
+
|
70 |
+
Importantly, this model has been superseded by more advanced versions. For state-of-the-art performance, we recommend using the latest models from AstroMLab.
|
71 |
+
|
72 |
+
## Ethical Considerations
|
73 |
+
|
74 |
+
While this model is designed for scientific use, users should be mindful of potential misuse, such as generating misleading scientific content. Always verify model outputs against peer-reviewed sources for critical applications.
|
75 |
+
|
76 |
+
|
77 |
+
## Citation
|
78 |
+
|
79 |
+
If you use this model in your research, please cite:
|
80 |
+
|
81 |
+
@ARTICLE{2024RNAAS...8....7P,
|
82 |
+
author = {{Perkowski}, Ernest and {Pan}, Rui and {Nguyen}, Tuan Dung and {Ting}, Yuan-Sen and {Kruk}, Sandor and {Zhang}, Tong and {O'Neill}, Charlie and {Jablonska}, Maja and {Sun}, Zechang and {Smith}, Michael J. and {Liu}, Huiling and {Schawinski}, Kevin and {Iyer}, Kartheik and {Ciuc{\u{a}}}, Ioana and {UniverseTBD}},
|
83 |
+
title = "{AstroLLaMA-Chat: Scaling AstroLLaMA with Conversational and Diverse Datasets}",
|
84 |
+
journal = {Research Notes of the American Astronomical Society},
|
85 |
+
keywords = {Astronomy software, Publicly available software, Astronomical instrumentation, 1855, 1864, 799, Astrophysics - Instrumentation and Methods for Astrophysics, Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Astrophysics of Galaxies, Astrophysics - Solar and Stellar Astrophysics, Computer Science - Computation and Language, Computer Science - Machine Learning},
|
86 |
+
year = 2024,
|
87 |
+
month = jan,
|
88 |
+
volume = {8},
|
89 |
+
number = {1},
|
90 |
+
eid = {7},
|
91 |
+
pages = {7},
|
92 |
+
doi = {10.3847/2515-5172/ad1abe},
|
93 |
+
archivePrefix = {arXiv},
|
94 |
+
eprint = {2401.01916},
|
95 |
+
primaryClass = {astro-ph.IM},
|
96 |
+
adsurl = {https://ui.adsabs.harvard.edu/abs/2024RNAAS...8....7P},
|
97 |
+
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
|
98 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|