File size: 2,138 Bytes
750b97c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
language:
- jpn
license: apache-2.0
base_model: openai/whisper-small
tags:
- speaker-diarization
- speaker-segmentation
- generated_from_trainer
datasets:
- diarizers-community/callhome
model-index:
- name: speaker-segmentation-fine-tuned-callhome-jpn
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speaker-segmentation-fine-tuned-callhome-jpn
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the diarizers-community/callhome dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7482
- Der: 0.2201
- False Alarm: 0.0465
- Missed Detection: 0.1319
- Confusion: 0.0417
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:|
| 0.5488 | 1.0 | 328 | 0.7565 | 0.2280 | 0.0461 | 0.1355 | 0.0465 |
| 0.475 | 2.0 | 656 | 0.7596 | 0.2220 | 0.0467 | 0.1334 | 0.0419 |
| 0.4734 | 3.0 | 984 | 0.7531 | 0.2215 | 0.0437 | 0.1364 | 0.0414 |
| 0.4535 | 4.0 | 1312 | 0.7468 | 0.2194 | 0.0462 | 0.1323 | 0.0409 |
| 0.4764 | 5.0 | 1640 | 0.7482 | 0.2201 | 0.0465 | 0.1319 | 0.0417 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|