File size: 2,387 Bytes
60d5209 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: hate_speech_classifier
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# hate_speech_classifier
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0710
- Train Accuracy: 0.9765
- Train Precision: 0.9207
- Train Recall: 0.9921
- Validation Loss: 0.3637
- Validation Accuracy: 0.9016
- Validation Precision: 0.8507
- Validation Recall: 0.9371
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 3720, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Precision | Train Recall | Validation Loss | Validation Accuracy | Validation Precision | Validation Recall | Epoch |
|:----------:|:--------------:|:---------------:|:------------:|:---------------:|:-------------------:|:--------------------:|:-----------------:|:-----:|
| 0.1715 | 0.9374 | 0.8596 | 0.9650 | 0.3057 | 0.9024 | 0.7826 | 0.9463 | 0 |
| 0.1203 | 0.9572 | 0.8813 | 0.9846 | 0.3223 | 0.9034 | 0.8117 | 0.9455 | 1 |
| 0.0710 | 0.9765 | 0.9207 | 0.9921 | 0.3637 | 0.9016 | 0.8507 | 0.9371 | 2 |
### Framework versions
- Transformers 4.48.3
- TensorFlow 2.18.0
- Tokenizers 0.21.0
|