File size: 15,569 Bytes
6ccae74
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f51f005b940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f51f0059cc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681293531903528251, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA/6G6Ppq8Lr0WJA8//6G6Ppq8Lr0WJA8//6G6Ppq8Lr0WJA8//6G6Ppq8Lr0WJA8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAniyrP4mkob+Q5r6/6OODP8zUfD8tac0+R8M8v6hH+r6iH6k/SAysvxj+rz/Hw7O/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD/obo+mrwuvRYkDz8Ez4C7IhCqu6cwXDv/obo+mrwuvRYkDz8Ez4C7IhCqu6cwXDv/obo+mrwuvRYkDz8Ez4C7IhCqu6cwXDv/obo+mrwuvRYkDz8Ez4C7IhCqu6cwXDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.36451718 -0.04266033  0.5591444 ]\n [ 0.36451718 -0.04266033  0.5591444 ]\n [ 0.36451718 -0.04266033  0.5591444 ]\n [ 0.36451718 -0.04266033  0.5591444 ]]", "desired_goal": "[[ 1.3372991  -1.2628337  -1.4914112 ]\n [ 1.0303926   0.987622    0.40119305]\n [-0.7373547  -0.48882794  1.3212779 ]\n [-1.3441248   1.3749418  -1.4044122 ]]", "observation": "[[ 0.36451718 -0.04266033  0.5591444  -0.00393093 -0.00518991  0.00335983]\n [ 0.36451718 -0.04266033  0.5591444  -0.00393093 -0.00518991  0.00335983]\n [ 0.36451718 -0.04266033  0.5591444  -0.00393093 -0.00518991  0.00335983]\n [ 0.36451718 -0.04266033  0.5591444  -0.00393093 -0.00518991  0.00335983]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABUYFvn/0ST05tzI+f4UCPW5mrj3eJog9x4IIPphKLTzzu7g9jdL7PRnXMzsvo5Q9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[-0.13014992  0.04930544  0.17452706]\n [ 0.03186559  0.08515631  0.06648038]\n [ 0.13331138  0.01057687  0.09020223]\n [ 0.12296019  0.00274414  0.07257687]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsDpypDPw/7+UhpRSlIwBbJRLMowBdJRHQKz0JHQyAQR1fZQoaAZoCWgPQwhc5J6u7vgEwJSGlFKUaBVLMmgWR0Cs86mKIi1RdX2UKGgGaAloD0MIFkz8UdSZBMCUhpRSlGgVSzJoFkdArPMW8VYZEXV9lChoBmgJaA9DCI6vPbMkgAPAlIaUUpRoFUsyaBZHQKzygiXY1511fZQoaAZoCWgPQwhpqFFIMqsEwJSGlFKUaBVLMmgWR0Cs9fAwPAfudX2UKGgGaAloD0MIHyxjQze7/r+UhpRSlGgVSzJoFkdArPV1MCcPOXV9lChoBmgJaA9DCOPEVzuKs/+/lIaUUpRoFUsyaBZHQKz04r3j+711fZQoaAZoCWgPQwgWTWcng0MBwJSGlFKUaBVLMmgWR0Cs9E/D1oQGdX2UKGgGaAloD0MIk1M7w9Q2B8CUhpRSlGgVSzJoFkdArPeuvfTCtXV9lChoBmgJaA9DCIVdFD3w0QjAlIaUUpRoFUsyaBZHQKz3M/ag2611fZQoaAZoCWgPQwiJ0Ag2rv/7v5SGlFKUaBVLMmgWR0Cs9qEbHZK4dX2UKGgGaAloD0MIseHplbLsAsCUhpRSlGgVSzJoFkdArPYNm6GxlnV9lChoBmgJaA9DCB9I3jmUoQnAlIaUUpRoFUsyaBZHQKz5ZVe8f3h1fZQoaAZoCWgPQwgv4dBbPJwOwJSGlFKUaBVLMmgWR0Cs+OsF+uvEdX2UKGgGaAloD0MI3dCUnX6wCMCUhpRSlGgVSzJoFkdArPhYkTpPh3V9lChoBmgJaA9DCM/3U+Olew3AlIaUUpRoFUsyaBZHQKz3xG9YfXB1fZQoaAZoCWgPQwhAv+/fvNgEwJSGlFKUaBVLMmgWR0Cs+y8QiA2AdX2UKGgGaAloD0MI3V1nQ/65DsCUhpRSlGgVSzJoFkdArPqz2JzkqHV9lChoBmgJaA9DCMssQrEVNPy/lIaUUpRoFUsyaBZHQKz6IMLncL11fZQoaAZoCWgPQwg9DoP5K6QHwJSGlFKUaBVLMmgWR0Cs+YzNdJJ5dX2UKGgGaAloD0MI2xZlNsjEBMCUhpRSlGgVSzJoFkdArPz2XE61cHV9lChoBmgJaA9DCE8hV+pZkAjAlIaUUpRoFUsyaBZHQKz8e2w3YL91fZQoaAZoCWgPQwiale1D3hIMwJSGlFKUaBVLMmgWR0Cs++iLuQZGdX2UKGgGaAloD0MIg94bQwDQBcCUhpRSlGgVSzJoFkdArPtUguAZsXV9lChoBmgJaA9DCKw3aoXp2wDAlIaUUpRoFUsyaBZHQKz+ymmce8x1fZQoaAZoCWgPQwghrweT4mMJwJSGlFKUaBVLMmgWR0Cs/lAMUh3adX2UKGgGaAloD0MIOBCSBUzgAsCUhpRSlGgVSzJoFkdArP29VtGd7XV9lChoBmgJaA9DCMV0IVZ/RPa/lIaUUpRoFUsyaBZHQKz9KThYNiJ1fZQoaAZoCWgPQwjwFkhQ/FgHwJSGlFKUaBVLMmgWR0CtAMZeJHiFdX2UKGgGaAloD0MIqTP3kPDdCcCUhpRSlGgVSzJoFkdArQBLcsUZenV9lChoBmgJaA9DCJAvoYLD6wbAlIaUUpRoFUsyaBZHQKz/uPmxMWZ1fZQoaAZoCWgPQwhW1jbF44IGwJSGlFKUaBVLMmgWR0Cs/yZwwTM8dX2UKGgGaAloD0MIOfHVjuKcEMCUhpRSlGgVSzJoFkdArQIuvIOpbXV9lChoBmgJaA9DCGrf3F89rvy/lIaUUpRoFUsyaBZHQK0Bs1aW5Yp1fZQoaAZoCWgPQwjxg/OpYzUJwJSGlFKUaBVLMmgWR0CtASBiCrcTdX2UKGgGaAloD0MI7s9FQ8Zj+r+UhpRSlGgVSzJoFkdArQCL2FnIyXV9lChoBmgJaA9DCBZPPdLgtgnAlIaUUpRoFUsyaBZHQK0DV4Hooux1fZQoaAZoCWgPQwjIemr11dX8v5SGlFKUaBVLMmgWR0CtAtxYigTRdX2UKGgGaAloD0MIV0J3SZxVDcCUhpRSlGgVSzJoFkdArQJJZEDyOXV9lChoBmgJaA9DCLUaEvdYOgHAlIaUUpRoFUsyaBZHQK0BtP420iR1fZQoaAZoCWgPQwghrMYS1qYJwJSGlFKUaBVLMmgWR0CtBHPvrnkldX2UKGgGaAloD0MIGlJF8Sqr/L+UhpRSlGgVSzJoFkdArQP4SDh99nV9lChoBmgJaA9DCCridJKtDgLAlIaUUpRoFUsyaBZHQK0DZM/QjUx1fZQoaAZoCWgPQwi2SNqNPmYBwJSGlFKUaBVLMmgWR0CtAs/nnuAqdX2UKGgGaAloD0MI2WDhJM1/CcCUhpRSlGgVSzJoFkdArQWF5a/yoXV9lChoBmgJaA9DCATidf2CPQ3AlIaUUpRoFUsyaBZHQK0FCldkauR1fZQoaAZoCWgPQwjaxwp+G4ILwJSGlFKUaBVLMmgWR0CtBHdDIBBBdX2UKGgGaAloD0MIk6rtJviGC8CUhpRSlGgVSzJoFkdArQPii22G7HV9lChoBmgJaA9DCExQw7ew7v2/lIaUUpRoFUsyaBZHQK0HALwWnCR1fZQoaAZoCWgPQwiMaaZ7nVT6v5SGlFKUaBVLMmgWR0CtBoVn/T9bdX2UKGgGaAloD0MId9uF5jptBMCUhpRSlGgVSzJoFkdArQXyJ40Mw3V9lChoBmgJaA9DCOW2fY/6K/S/lIaUUpRoFUsyaBZHQK0FXWDHwPR1fZQoaAZoCWgPQwhpHsAiv/71v5SGlFKUaBVLMmgWR0CtCFOBMBZIdX2UKGgGaAloD0MIg92wbVGm+b+UhpRSlGgVSzJoFkdArQfX3ztkWnV9lChoBmgJaA9DCCmuKvuuKAPAlIaUUpRoFUsyaBZHQK0HRWf9P1t1fZQoaAZoCWgPQwjTTzi7tUz1v5SGlFKUaBVLMmgWR0CtBrDpC8e0dX2UKGgGaAloD0MIAb7bvHFS/7+UhpRSlGgVSzJoFkdArQl7H4oJA3V9lChoBmgJaA9DCMbdIForGgbAlIaUUpRoFUsyaBZHQK0I/6XSjQB1fZQoaAZoCWgPQwjItaFinN8DwJSGlFKUaBVLMmgWR0CtCGx3NcGDdX2UKGgGaAloD0MItyqJ7INsCsCUhpRSlGgVSzJoFkdArQfXpbD/EXV9lChoBmgJaA9DCJRnXg677/2/lIaUUpRoFUsyaBZHQK0KrU83dbh1fZQoaAZoCWgPQwiu1onL8eoCwJSGlFKUaBVLMmgWR0CtCjGdI5HVdX2UKGgGaAloD0MI4Ln3cMkxBcCUhpRSlGgVSzJoFkdArQmehwl0HXV9lChoBmgJaA9DCJ9VZkrrDw3AlIaUUpRoFUsyaBZHQK0JCdU83dd1fZQoaAZoCWgPQwiQ2O4eoPsAwJSGlFKUaBVLMmgWR0CtC8F4LThHdX2UKGgGaAloD0MIkncOZahK87+UhpRSlGgVSzJoFkdArQtF1r6+FnV9lChoBmgJaA9DCGBa1Ce5wwbAlIaUUpRoFUsyaBZHQK0Ksl1KXfJ1fZQoaAZoCWgPQwhQ/1nz4+8DwJSGlFKUaBVLMmgWR0CtCh3xnWaudX2UKGgGaAloD0MIGttrQe8tDcCUhpRSlGgVSzJoFkdArQzit5le4XV9lChoBmgJaA9DCMhBCTNtHwXAlIaUUpRoFUsyaBZHQK0MZwQ176Z1fZQoaAZoCWgPQwhWEANd+4L/v5SGlFKUaBVLMmgWR0CtC9N9ph4MdX2UKGgGaAloD0MIYK5FC9C2A8CUhpRSlGgVSzJoFkdArQs+p6yB1HV9lChoBmgJaA9DCLyQDg9hfP2/lIaUUpRoFUsyaBZHQK0N+AhB7eF1fZQoaAZoCWgPQwgMW7OVl3wBwJSGlFKUaBVLMmgWR0CtDXxzq8lHdX2UKGgGaAloD0MISGqhZHIqCMCUhpRSlGgVSzJoFkdArQzpPVNHpnV9lChoBmgJaA9DCHMqGQCqKBHAlIaUUpRoFUsyaBZHQK0MVHq/ub91fZQoaAZoCWgPQwhpigCnd7Hyv5SGlFKUaBVLMmgWR0CtDxVwxWT5dX2UKGgGaAloD0MISE4mbhUkBcCUhpRSlGgVSzJoFkdArQ6Z7qptJnV9lChoBmgJaA9DCL3jFB3JxQDAlIaUUpRoFUsyaBZHQK0OBm1YyO91fZQoaAZoCWgPQwhK628JwP/+v5SGlFKUaBVLMmgWR0CtDXH2AXl9dX2UKGgGaAloD0MI/vM0YJD087+UhpRSlGgVSzJoFkdArRA9jXnQpnV9lChoBmgJaA9DCGaFIt3PqfW/lIaUUpRoFUsyaBZHQK0PweKbayt1fZQoaAZoCWgPQwho6Qq2EY//v5SGlFKUaBVLMmgWR0CtDy8ynDR/dX2UKGgGaAloD0MISRCugEL9BcCUhpRSlGgVSzJoFkdArQ6aZc9nsnV9lChoBmgJaA9DCOdu10tTJA7AlIaUUpRoFUsyaBZHQK0Ri/h2nsN1fZQoaAZoCWgPQwgujPSidj8BwJSGlFKUaBVLMmgWR0CtERCILw4LdX2UKGgGaAloD0MINPPkmgI5AcCUhpRSlGgVSzJoFkdArRB9+EytWHV9lChoBmgJaA9DCFCm0eRiTAvAlIaUUpRoFUsyaBZHQK0P6X9itq51fZQoaAZoCWgPQwjfFcH/VrL4v5SGlFKUaBVLMmgWR0CtEw9RaX8gdX2UKGgGaAloD0MINdO9TuoL+L+UhpRSlGgVSzJoFkdArRKT0Fr2x3V9lChoBmgJaA9DCB7f3jXoiwDAlIaUUpRoFUsyaBZHQK0SAOq//Nt1fZQoaAZoCWgPQwg17zhFRzIGwJSGlFKUaBVLMmgWR0CtEWw2dd3TdX2UKGgGaAloD0MIbt3NUx0SCMCUhpRSlGgVSzJoFkdArRQyrzXjEXV9lChoBmgJaA9DCPcBSG3iJPK/lIaUUpRoFUsyaBZHQK0Ttwy6+WZ1fZQoaAZoCWgPQwjuW60Tl2MIwJSGlFKUaBVLMmgWR0CtEyONYKYzdX2UKGgGaAloD0MIk5BI2/gzB8CUhpRSlGgVSzJoFkdArRKOsJY1YXV9lChoBmgJaA9DCCGwcmiRbQbAlIaUUpRoFUsyaBZHQK0Vr6Q/5cl1fZQoaAZoCWgPQwj/dW7ajHMMwJSGlFKUaBVLMmgWR0CtFTStFKChdX2UKGgGaAloD0MIZM3IIHcR9b+UhpRSlGgVSzJoFkdArRSide6ZpnV9lChoBmgJaA9DCC/APjp1Zf6/lIaUUpRoFUsyaBZHQK0UD4fOlft1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}