File size: 4,449 Bytes
9dd0a27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---

license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-tiny-patch4-window8-256-Diabetic-Retinopathy-DA
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8090909090909091
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swinv2-tiny-patch4-window8-256-Diabetic-Retinopathy-DA

This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6974
- Accuracy: 0.8091

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1

- num_epochs: 40

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.5987        | 1.0   | 23   | 1.5683          | 0.4909   |
| 1.4137        | 2.0   | 46   | 1.2639          | 0.4909   |
| 1.1988        | 3.0   | 69   | 0.8726          | 0.7636   |
| 0.8533        | 4.0   | 92   | 0.6361          | 0.7545   |
| 0.8042        | 5.0   | 115  | 0.5985          | 0.7545   |
| 0.7349        | 6.0   | 138  | 0.5943          | 0.7545   |
| 0.7003        | 7.0   | 161  | 0.5178          | 0.7636   |
| 0.6641        | 8.0   | 184  | 0.5058          | 0.7545   |
| 0.641         | 9.0   | 207  | 0.5092          | 0.7909   |
| 0.6571        | 10.0  | 230  | 0.5319          | 0.7636   |
| 0.6522        | 11.0  | 253  | 0.5726          | 0.7909   |
| 0.5659        | 12.0  | 276  | 0.5490          | 0.7727   |
| 0.5511        | 13.0  | 299  | 0.5465          | 0.8      |
| 0.5435        | 14.0  | 322  | 0.5728          | 0.7909   |
| 0.5259        | 15.0  | 345  | 0.6047          | 0.7636   |
| 0.5496        | 16.0  | 368  | 0.6479          | 0.7818   |
| 0.543         | 17.0  | 391  | 0.6040          | 0.7727   |
| 0.4646        | 18.0  | 414  | 0.6269          | 0.7818   |
| 0.4867        | 19.0  | 437  | 0.6535          | 0.7909   |
| 0.4357        | 20.0  | 460  | 0.6991          | 0.7727   |
| 0.4392        | 21.0  | 483  | 0.7127          | 0.7636   |
| 0.4403        | 22.0  | 506  | 0.6974          | 0.8091   |
| 0.4358        | 23.0  | 529  | 0.6883          | 0.7818   |
| 0.4094        | 24.0  | 552  | 0.6768          | 0.8      |
| 0.3913        | 25.0  | 575  | 0.7270          | 0.7636   |
| 0.3686        | 26.0  | 598  | 0.7104          | 0.7727   |
| 0.3679        | 27.0  | 621  | 0.7115          | 0.7818   |
| 0.378         | 28.0  | 644  | 0.8020          | 0.8091   |
| 0.3583        | 29.0  | 667  | 0.7524          | 0.7909   |
| 0.3299        | 30.0  | 690  | 0.7783          | 0.7909   |
| 0.3672        | 31.0  | 713  | 0.8193          | 0.7909   |
| 0.3567        | 32.0  | 736  | 0.8095          | 0.7909   |
| 0.3585        | 33.0  | 759  | 0.8324          | 0.7909   |
| 0.3191        | 34.0  | 782  | 0.8042          | 0.7909   |
| 0.3144        | 35.0  | 805  | 0.8189          | 0.7909   |
| 0.3452        | 36.0  | 828  | 0.8377          | 0.7909   |
| 0.3263        | 37.0  | 851  | 0.8204          | 0.7909   |
| 0.2939        | 38.0  | 874  | 0.8103          | 0.7909   |
| 0.3152        | 39.0  | 897  | 0.8184          | 0.7818   |
| 0.2787        | 40.0  | 920  | 0.8241          | 0.7818   |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0