File size: 4,219 Bytes
39ca2be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
---
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-tiny-patch4-window8-256-OT
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8225806451612904
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swinv2-tiny-patch4-window8-256-OT
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6192
- Accuracy: 0.8226
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00015
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.91 | 5 | 8.8439 | 0.0806 |
| 8.7922 | 2.0 | 11 | 8.0016 | 0.0806 |
| 8.7922 | 2.91 | 16 | 6.0009 | 0.0806 |
| 6.5264 | 4.0 | 22 | 2.7431 | 0.0806 |
| 6.5264 | 4.91 | 27 | 1.3018 | 0.4516 |
| 2.16 | 6.0 | 33 | 1.2696 | 0.4516 |
| 2.16 | 6.91 | 38 | 1.2057 | 0.4516 |
| 1.2876 | 8.0 | 44 | 1.2157 | 0.4516 |
| 1.2876 | 8.91 | 49 | 1.2459 | 0.4516 |
| 1.2456 | 10.0 | 55 | 1.2110 | 0.4516 |
| 1.1901 | 10.91 | 60 | 1.1861 | 0.4516 |
| 1.1901 | 12.0 | 66 | 1.0847 | 0.4677 |
| 1.0665 | 12.91 | 71 | 1.0944 | 0.4677 |
| 1.0665 | 14.0 | 77 | 1.1854 | 0.4677 |
| 1.033 | 14.91 | 82 | 1.0252 | 0.5 |
| 1.033 | 16.0 | 88 | 1.2164 | 0.5161 |
| 1.0323 | 16.91 | 93 | 1.0643 | 0.5 |
| 1.0323 | 18.0 | 99 | 0.9802 | 0.6613 |
| 0.9329 | 18.91 | 104 | 0.9475 | 0.5968 |
| 0.8619 | 20.0 | 110 | 0.9115 | 0.6452 |
| 0.8619 | 20.91 | 115 | 0.8894 | 0.6452 |
| 0.8019 | 22.0 | 121 | 0.8276 | 0.6935 |
| 0.8019 | 22.91 | 126 | 0.8156 | 0.6774 |
| 0.7675 | 24.0 | 132 | 0.7928 | 0.6290 |
| 0.7675 | 24.91 | 137 | 0.7163 | 0.7419 |
| 0.6762 | 26.0 | 143 | 0.7388 | 0.6774 |
| 0.6762 | 26.91 | 148 | 0.6519 | 0.7581 |
| 0.6771 | 28.0 | 154 | 0.6710 | 0.7419 |
| 0.6771 | 28.91 | 159 | 0.6074 | 0.7581 |
| 0.6424 | 30.0 | 165 | 0.6729 | 0.7258 |
| 0.6139 | 30.91 | 170 | 0.5744 | 0.7903 |
| 0.6139 | 32.0 | 176 | 0.6192 | 0.8226 |
| 0.5713 | 32.91 | 181 | 0.6453 | 0.7903 |
| 0.5713 | 34.0 | 187 | 0.6392 | 0.7903 |
| 0.5462 | 34.91 | 192 | 0.5956 | 0.8226 |
| 0.5462 | 36.0 | 198 | 0.5893 | 0.8226 |
| 0.5393 | 36.36 | 200 | 0.5898 | 0.8226 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
|