--- license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window8-256 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-RD-aptos19 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.616822429906542 --- # swinv2-tiny-patch4-window8-256-RD-aptos19 This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6580 - Accuracy: 0.6168 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00015 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 8 | 4.5659 | 0.4112 | | 4.5175 | 2.0 | 16 | 3.6471 | 0.4112 | | 3.927 | 3.0 | 24 | 1.6286 | 0.4112 | | 1.6081 | 4.0 | 32 | 0.6781 | 0.5888 | | 0.7702 | 5.0 | 40 | 0.8357 | 0.5888 | | 0.7702 | 6.0 | 48 | 0.6766 | 0.5888 | | 0.7502 | 7.0 | 56 | 0.7522 | 0.4112 | | 0.7266 | 8.0 | 64 | 0.6792 | 0.5888 | | 0.6954 | 9.0 | 72 | 0.6881 | 0.5888 | | 0.6808 | 10.0 | 80 | 0.6780 | 0.5888 | | 0.6808 | 11.0 | 88 | 0.7130 | 0.5888 | | 0.7068 | 12.0 | 96 | 0.6771 | 0.5888 | | 0.6792 | 13.0 | 104 | 0.6779 | 0.5888 | | 0.6841 | 14.0 | 112 | 0.6766 | 0.5888 | | 0.6777 | 15.0 | 120 | 0.6861 | 0.5888 | | 0.6777 | 16.0 | 128 | 0.6773 | 0.5888 | | 0.6818 | 17.0 | 136 | 0.6806 | 0.5888 | | 0.6747 | 18.0 | 144 | 0.6929 | 0.5888 | | 0.6814 | 19.0 | 152 | 0.6767 | 0.5888 | | 0.6714 | 20.0 | 160 | 0.6745 | 0.5888 | | 0.6714 | 21.0 | 168 | 0.6852 | 0.5888 | | 0.6765 | 22.0 | 176 | 0.6816 | 0.5514 | | 0.6822 | 23.0 | 184 | 0.6983 | 0.5888 | | 0.6816 | 24.0 | 192 | 0.6706 | 0.5888 | | 0.6868 | 25.0 | 200 | 0.6982 | 0.5701 | | 0.6868 | 26.0 | 208 | 0.6878 | 0.5701 | | 0.6724 | 27.0 | 216 | 0.6785 | 0.5888 | | 0.6613 | 28.0 | 224 | 0.6843 | 0.5888 | | 0.6501 | 29.0 | 232 | 0.7126 | 0.5888 | | 0.6566 | 30.0 | 240 | 0.6917 | 0.5701 | | 0.6566 | 31.0 | 248 | 0.7020 | 0.5607 | | 0.6583 | 32.0 | 256 | 0.6782 | 0.5888 | | 0.6501 | 33.0 | 264 | 0.6647 | 0.5888 | | 0.654 | 34.0 | 272 | 0.6603 | 0.5981 | | 0.6604 | 35.0 | 280 | 0.6873 | 0.5794 | | 0.6604 | 36.0 | 288 | 0.6591 | 0.5794 | | 0.6456 | 37.0 | 296 | 0.6580 | 0.6168 | | 0.6483 | 38.0 | 304 | 0.6702 | 0.5981 | | 0.6151 | 39.0 | 312 | 0.6785 | 0.5981 | | 0.6291 | 40.0 | 320 | 0.6806 | 0.5981 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0