--- license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window8-256 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-RD-aptos19 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.6739130434782609 --- # swinv2-tiny-patch4-window8-256-RD-aptos19 This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 144573075075950992480149202324684800.0000 - Accuracy: 0.6739 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00015 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-----------------------------------------:|:-----:|:----:|:-----------------------------------------:|:--------:| | No log | 0.86 | 3 | 144573075075950992480149202324684800.0000 | 0.4565 | | No log | 2.0 | 7 | 144573075075950992480149202324684800.0000 | 0.4565 | | 141735823463928302525633790371430400.0000 | 2.86 | 10 | 144573075075950992480149202324684800.0000 | 0.4565 | | 141735823463928302525633790371430400.0000 | 4.0 | 14 | 144573075075950992480149202324684800.0000 | 0.4565 | | 141735823463928302525633790371430400.0000 | 4.86 | 17 | 144573075075950992480149202324684800.0000 | 0.4565 | | 148386187888478135085935683952443392.0000 | 6.0 | 21 | 144573075075950992480149202324684800.0000 | 0.4565 | | 148386187888478135085935683952443392.0000 | 6.86 | 24 | 144573075075950992480149202324684800.0000 | 0.4783 | | 148386187888478135085935683952443392.0000 | 8.0 | 28 | 144573075075950992480149202324684800.0000 | 0.4565 | | 166674646480500797315403436963921920.0000 | 8.86 | 31 | 144573075075950992480149202324684800.0000 | 0.4565 | | 166674646480500797315403436963921920.0000 | 10.0 | 35 | 144573075075950992480149202324684800.0000 | 0.4565 | | 166674646480500797315403436963921920.0000 | 10.86 | 38 | 144573075075950992480149202324684800.0000 | 0.4565 | | 123031678471642034838718731348082688.0000 | 12.0 | 42 | 144573075075950992480149202324684800.0000 | 0.5217 | | 123031678471642034838718731348082688.0000 | 12.86 | 45 | 144573075075950992480149202324684800.0000 | 0.6087 | | 123031678471642034838718731348082688.0000 | 14.0 | 49 | 144573075075950992480149202324684800.0000 | 0.5435 | | 160439944687765812243898756589682688.0000 | 14.86 | 52 | 144573075075950992480149202324684800.0000 | 0.6522 | | 160439944687765812243898756589682688.0000 | 16.0 | 56 | 144573075075950992480149202324684800.0000 | 0.5870 | | 160439944687765812243898756589682688.0000 | 16.86 | 59 | 144573075075950992480149202324684800.0000 | 0.5652 | | 151295747083019479456202288017702912.0000 | 18.0 | 63 | 144573075075950992480149202324684800.0000 | 0.6087 | | 151295747083019479456202288017702912.0000 | 18.86 | 66 | 144573075075950992480149202324684800.0000 | 0.6304 | | 142151454404478133240649521934893056.0000 | 20.0 | 70 | 144573075075950992480149202324684800.0000 | 0.6522 | | 142151454404478133240649521934893056.0000 | 20.86 | 73 | 144573075075950992480149202324684800.0000 | 0.6739 | | 142151454404478133240649521934893056.0000 | 22.0 | 77 | 144573075075950992480149202324684800.0000 | 0.6739 | | 137163724661555136131785556085440512.0000 | 22.86 | 80 | 144573075075950992480149202324684800.0000 | 0.6304 | | 137163724661555136131785556085440512.0000 | 24.0 | 84 | 144573075075950992480149202324684800.0000 | 0.6304 | | 137163724661555136131785556085440512.0000 | 24.86 | 87 | 144573075075950992480149202324684800.0000 | 0.6739 | | 137163692970290119358004074442129408.0000 | 26.0 | 91 | 144573075075950992480149202324684800.0000 | 0.6304 | | 137163692970290119358004074442129408.0000 | 26.86 | 94 | 144573075075950992480149202324684800.0000 | 0.6522 | | 137163692970290119358004074442129408.0000 | 28.0 | 98 | 144573075075950992480149202324684800.0000 | 0.6522 | | 155452183253577798361253309096919040.0000 | 28.86 | 101 | 144573075075950992480149202324684800.0000 | 0.6739 | | 155452183253577798361253309096919040.0000 | 30.0 | 105 | 144573075075950992480149202324684800.0000 | 0.6522 | | 155452183253577798361253309096919040.0000 | 30.86 | 108 | 144573075075950992480149202324684800.0000 | 0.6522 | | 139657557841751617912436057366855680.0000 | 32.0 | 112 | 144573075075950992480149202324684800.0000 | 0.6522 | | 139657557841751617912436057366855680.0000 | 32.86 | 115 | 144573075075950992480149202324684800.0000 | 0.6522 | | 139657557841751617912436057366855680.0000 | 34.0 | 119 | 144573075075950992480149202324684800.0000 | 0.6304 | | 141735791772663285751852308728119296.0000 | 34.29 | 120 | 144573075075950992480149202324684800.0000 | 0.6304 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0