# 🧠 Code Generation Model – Fine-Tuned `Salesforce/codegen-350M-multi` This repository contains a fine-tuned version of the [`Salesforce/codegen-350M-multi`](https://huggingface.co/Salesforce/codegen-350M-multi) model. It generates code snippets based on natural language or function signature prompts. --- ## 📦 Base Model - **Model**: `Salesforce/codegen-350M-multi` - **Architecture**: Causal LM (Decoder-only Transformer) - **Parameters**: ~350M - **Supports**: Python, JavaScript, Java, and more - **Quantized**: ✅ FP16 using `bitsandbytes` (optional) --- ## 📚 Dataset ### Dataset: [code_x_glue_cc_code_to_text](https://huggingface.co/datasets/code_x_glue_cc_code_to_text) - **Source**: Hugging Face Datasets - **Description**: Dataset of code snippets (in Python) and corresponding natural language docstrings. ```python from datasets import load_dataset dataset = load_dataset("code_x_glue_cc_code_to_text", "python") ``` # 📊 Evaluation (Scoring) Metric: BLEU or CodeBLEU (you can also use exact match, ROUGE, etc.) ```python from datasets import load_metric bleu = load_metric("bleu") bleu_score = bleu.compute(predictions=["generated_code"], references=["reference_code"]) print("BLEU Score:", bleu_score) ``` # 📁 Folder Structure finetuned_codegen_350M/ ├── config.json ├── pytorch_model.bin ├── tokenizer_config.json ├── tokenizer.json ├── special_tokens_map.json ├── vocab.json ├── merges.txt ├── training_args.bin └── README.md # 💬 Inference Example ```python from transformers import pipeline pipe = pipeline("text-generation", model="./finetuned_codegen_350M", device=0) prompt = "def is_prime(n):" result = pipe(prompt, max_length=100, do_sample=True) print(result[0]["generated_text"])