Delete spam_detection_pipeline.md
Browse files- spam_detection_pipeline.md +0 -151
spam_detection_pipeline.md
DELETED
@@ -1,151 +0,0 @@
|
|
1 |
-
|
2 |
-
# Spam Detection using DistilBERT and Quantization
|
3 |
-
|
4 |
-
## 🛠 Install Dependencies
|
5 |
-
|
6 |
-
```bash
|
7 |
-
!pip install transformers datasets evaluate scikit-learn torch
|
8 |
-
!pip install evaluate
|
9 |
-
```
|
10 |
-
|
11 |
-
## 📥 Step 1: Load and Reduce Dataset
|
12 |
-
|
13 |
-
```python
|
14 |
-
from datasets import load_dataset
|
15 |
-
dataset = load_dataset("yelp_polarity")
|
16 |
-
dataset["train"] = dataset["train"].shuffle(seed=42).select(range(50000))
|
17 |
-
dataset["test"] = dataset["test"].shuffle(seed=42).select(range(10000))
|
18 |
-
```
|
19 |
-
|
20 |
-
## ✂️ Step 2: Tokenization
|
21 |
-
|
22 |
-
```python
|
23 |
-
from transformers import AutoTokenizer
|
24 |
-
model_name = "distilbert-base-uncased"
|
25 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
26 |
-
|
27 |
-
def tokenize_function(example):
|
28 |
-
return tokenizer(example["text"], padding="max_length", truncation=True)
|
29 |
-
|
30 |
-
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
31 |
-
```
|
32 |
-
|
33 |
-
## 🏷 Step 3: Rename 'label' to 'labels' and Set Format
|
34 |
-
|
35 |
-
```python
|
36 |
-
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
37 |
-
tokenized_datasets.set_format("torch", columns=["input_ids", "attention_mask", "labels"])
|
38 |
-
```
|
39 |
-
|
40 |
-
## 🧠 Step 4: Load Model
|
41 |
-
|
42 |
-
```python
|
43 |
-
from transformers import AutoModelForSequenceClassification
|
44 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
|
45 |
-
```
|
46 |
-
|
47 |
-
## 📊 Step 5: Define Metrics
|
48 |
-
|
49 |
-
```python
|
50 |
-
import numpy as np
|
51 |
-
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
52 |
-
|
53 |
-
def compute_metrics(eval_pred):
|
54 |
-
logits, labels = eval_pred
|
55 |
-
preds = np.argmax(logits, axis=-1)
|
56 |
-
acc = accuracy_score(labels, preds)
|
57 |
-
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average="binary")
|
58 |
-
return {"accuracy": acc, "precision": precision, "recall": recall, "f1": f1}
|
59 |
-
```
|
60 |
-
|
61 |
-
## ⚙️ Step 6: Training Setup
|
62 |
-
|
63 |
-
```python
|
64 |
-
from transformers import TrainingArguments, Trainer
|
65 |
-
|
66 |
-
training_args = TrainingArguments(
|
67 |
-
output_dir="./results",
|
68 |
-
eval_strategy="epoch",
|
69 |
-
learning_rate=2e-5,
|
70 |
-
per_device_train_batch_size=16,
|
71 |
-
per_device_eval_batch_size=16,
|
72 |
-
num_train_epochs=3,
|
73 |
-
weight_decay=0.01,
|
74 |
-
logging_dir="./logs",
|
75 |
-
logging_steps=10,
|
76 |
-
)
|
77 |
-
|
78 |
-
trainer = Trainer(
|
79 |
-
model=model,
|
80 |
-
args=training_args,
|
81 |
-
train_dataset=tokenized_datasets["train"],
|
82 |
-
eval_dataset=tokenized_datasets["test"],
|
83 |
-
compute_metrics=compute_metrics,
|
84 |
-
)
|
85 |
-
```
|
86 |
-
|
87 |
-
## 🚀 Step 7: Train
|
88 |
-
|
89 |
-
```python
|
90 |
-
trainer.train()
|
91 |
-
trainer.save_model("./results")
|
92 |
-
tokenizer.save_pretrained("./results")
|
93 |
-
```
|
94 |
-
|
95 |
-
## 🔍 Step 8: Inference on Sample Texts
|
96 |
-
|
97 |
-
```python
|
98 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
99 |
-
import torch
|
100 |
-
|
101 |
-
model = AutoModelForSequenceClassification.from_pretrained("./results")
|
102 |
-
tokenizer = AutoTokenizer.from_pretrained("./results")
|
103 |
-
model.eval()
|
104 |
-
|
105 |
-
sample_texts = [
|
106 |
-
"The food was absolutely wonderful!",
|
107 |
-
"Terrible experience. I will never come back.",
|
108 |
-
"Average service, but the food was decent.",
|
109 |
-
"I loved the ambiance and the staff was super friendly!",
|
110 |
-
"Worst food I've had in a long time.",
|
111 |
-
"Highly recommend this place for a date night.",
|
112 |
-
"The waiter was rude and the food was cold.",
|
113 |
-
"Amazing pizza, will order again!",
|
114 |
-
"They took too long to serve and it was overpriced.",
|
115 |
-
"Best customer service and delicious desserts!"
|
116 |
-
]
|
117 |
-
|
118 |
-
for text in sample_texts:
|
119 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
120 |
-
with torch.no_grad():
|
121 |
-
outputs = model(**inputs)
|
122 |
-
prediction = torch.argmax(outputs.logits, dim=-1).item()
|
123 |
-
sentiment = "Positive" if prediction == 1 else "Negative"
|
124 |
-
print(f"Text: {text}\nPredicted Sentiment: {sentiment}\n")
|
125 |
-
```
|
126 |
-
|
127 |
-
## 📦 Step 9: Quantize the Model
|
128 |
-
|
129 |
-
```python
|
130 |
-
import os
|
131 |
-
import torch
|
132 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
133 |
-
|
134 |
-
model = AutoModelForSequenceClassification.from_pretrained("./results")
|
135 |
-
|
136 |
-
quantized_model = torch.quantization.quantize_dynamic(
|
137 |
-
model,
|
138 |
-
{torch.nn.Linear},
|
139 |
-
dtype=torch.qint8
|
140 |
-
)
|
141 |
-
|
142 |
-
quantized_model_path = "./results/quantized_model"
|
143 |
-
os.makedirs(quantized_model_path, exist_ok=True)
|
144 |
-
|
145 |
-
torch.save(quantized_model.state_dict(), f"{quantized_model_path}/pytorch_model.bin")
|
146 |
-
model.config.save_pretrained(quantized_model_path)
|
147 |
-
tokenizer = AutoTokenizer.from_pretrained("./results")
|
148 |
-
tokenizer.save_pretrained(quantized_model_path)
|
149 |
-
|
150 |
-
print("✅ Quantized model saved at:", quantized_model_path)
|
151 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|