Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# π§ Food-Image-Classification-AI-Model
|
2 |
+
|
3 |
+
A Food image classification model fine-tuned on the Food-101 dataset using the powerful facebook/deit-base-patch16-224 architecture. This model classifies images into one of 101 popular food categories such as pizza, ramen, pad thai, sushi, and more.
|
4 |
+
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
|
9 |
+
## β¨ Model Highlights
|
10 |
+
|
11 |
+
- π Base Model: facebook/deit-base-patch16-224
|
12 |
+
- π Datasets: Food-101 Data
|
13 |
+
- πΏ Classes: 101 food categories (e.g., pizza, ramen, steak, etc.)
|
14 |
+
- π§ Framework: Hugging Face Transformers + PyTorch
|
15 |
+
|
16 |
+
---
|
17 |
+
|
18 |
+
## π§ Intended Uses
|
19 |
+
|
20 |
+
- β
Food image classification in apps/web
|
21 |
+
- β
Educational visual datasets
|
22 |
+
- β
Food blog/media categorization
|
23 |
+
- β
Restaurant ordering support systems
|
24 |
+
|
25 |
+
---
|
26 |
+
|
27 |
+
## π« Limitations
|
28 |
+
|
29 |
+
- β May not perform well on poor-quality or mixed-food images
|
30 |
+
- β Not optimized for detecting multiple food items per image
|
31 |
+
|
32 |
+
|
33 |
+
---
|
34 |
+
|
35 |
+
## ποΈββοΈ Training Details
|
36 |
+
|
37 |
+
| Attribute | Value |
|
38 |
+
|--------------------|----------------------------------|
|
39 |
+
| Base Model | facebook/deit-base-patch16-224 |
|
40 |
+
| Dataset | Food-101-Dataset |
|
41 |
+
| Task Type | Image Classification |
|
42 |
+
| Epochs | 3 |
|
43 |
+
| Batch Size | 16 |
|
44 |
+
| Optimizer | AdamW |
|
45 |
+
| Loss Function | CrossEntropyLoss |
|
46 |
+
| Framework | PyTorch + Transformers |
|
47 |
+
| Hardware | CUDA-enabled GPU |
|
48 |
+
|
49 |
+
---
|
50 |
+
|
51 |
+
## π Evaluation Metrics
|
52 |
+
|
53 |
+
|
54 |
+
| Metric | Score |
|
55 |
+
| ----------------------------------------------- | ----- |
|
56 |
+
| Accuracy | 0.97 |
|
57 |
+
| F1-Score | 0.98 |
|
58 |
+
| Precision | 0.99 |
|
59 |
+
| Recall | 0.97 |
|
60 |
+
|
61 |
+
|
62 |
+
---
|
63 |
+
|
64 |
+
---
|
65 |
+
π Usage
|
66 |
+
```python
|
67 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
68 |
+
from PIL import Image
|
69 |
+
import torch
|
70 |
+
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
|
71 |
+
|
72 |
+
# Load model and processor
|
73 |
+
model_name = "AventIQ-AI/Food-Classification-AI-Model"
|
74 |
+
|
75 |
+
model = AutoModelForImageClassification.from_pretrained("your-model-path")
|
76 |
+
processor = AutoImageProcessor.from_pretrained("your-model-path")
|
77 |
+
|
78 |
+
def predict(image_path):
|
79 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
80 |
+
model.to(device)
|
81 |
+
|
82 |
+
image = Image.open(image_path).convert("RGB")
|
83 |
+
transform = Compose([
|
84 |
+
Resize((224, 224)),
|
85 |
+
ToTensor(),
|
86 |
+
Normalize(mean=processor.image_mean, std=processor.image_std)
|
87 |
+
])
|
88 |
+
pixel_values = transform(image).unsqueeze(0).to(device)
|
89 |
+
|
90 |
+
with torch.no_grad():
|
91 |
+
outputs = model(pixel_values=pixel_values)
|
92 |
+
logits = outputs.logits
|
93 |
+
predicted_idx = logits.argmax(-1).item()
|
94 |
+
predicted_label = model.config.id2label[predicted_idx]
|
95 |
+
|
96 |
+
return predicted_label
|
97 |
+
|
98 |
+
# Example usage:
|
99 |
+
print(predict("Foodexample.jpg"))
|
100 |
+
|
101 |
+
```
|
102 |
+
---
|
103 |
+
|
104 |
+
- π§© Quantization
|
105 |
+
- Post-training static quantization applied using PyTorch to reduce model size and accelerate inference on edge devices.
|
106 |
+
|
107 |
+
----
|
108 |
+
|
109 |
+
π Repository Structure
|
110 |
+
```
|
111 |
+
.
|
112 |
+
beans-vit-finetuned/
|
113 |
+
βββ config.json β
Model architecture & config
|
114 |
+
βββ pytorch_model.bin β
Model weights
|
115 |
+
βββ preprocessor_config.json β
Image processor config
|
116 |
+
βββ training_args.bin β
Training metadata
|
117 |
+
βββ README.md β
Model card
|
118 |
+
|
119 |
+
```
|
120 |
+
---
|
121 |
+
π€ Contributing
|
122 |
+
|
123 |
+
Open to improvements and feedback! Feel free to submit a pull request or open an issue if you find any bugs or want to enhance the model.
|
124 |
+
|
125 |
+
|