# 📝 Question Answers Roberta Model This repository demonstrates how to **fine-tune** and **quantize** the [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) model for Question Answering using a sample dataset from Hugging Face Hub. --- ## 🚀 Model Overview - **Base Model:** `deepset/roberta-base-squad2` - **Task:** Extractive Question Answering - **Precision:** Supports FP32, FP16 (half-precision), and INT8 (quantized) - **Dataset:** [`squad`](https://huggingface.co/datasets/squad) — Stanford Question Answering Dataset (Hugging Face Datasets) --- ## 📦 Dataset Used We use the **`squad`** dataset from Hugging Face: ```bash pip install datasets ``` # Dataset ```Pyhton from datasets import load_dataset dataset = load_dataset("squad") ``` # Load Model & Tokenizer: ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, TrainingArguments, Trainer from datasets import load_dataset model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2") tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2") dataset = load_dataset("squad") ``` # ✅ Results Feature Benefit FP16 Fine-Tuning - Faster Training + Lower Memory INT8 Quantization - Smaller Model + Fast Inference Dataset - Stanford QA Dataset (SQuAD)