Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# π§ Resume-Parsing-NER-AI-Model
|
2 |
+
|
3 |
+
A custom Named Entity Recognition (NER) model fine-tuned on annotated resume data using a pre-trained BERT architecture. This model extracts structured information such as names, emails, phone numbers, skills, job titles, education, and companies from raw resume text.
|
4 |
+
|
5 |
+
---
|
6 |
+
|
7 |
+
|
8 |
+
## β¨ Model Highlights
|
9 |
+
|
10 |
+
- π Base Model: bert-base-cased-resume-ner
|
11 |
+
- π Datasets: Custom annotated resume dataset (BIO format)
|
12 |
+
- π·οΈ Entity Labels: Name, Email, Phone, Education, Skills, Company, Job Title
|
13 |
+
- π§ Framework: Hugging Face Transformers + PyTorch
|
14 |
+
- πΎ Format: transformers model directory (with tokenizer and config)
|
15 |
+
|
16 |
+
---
|
17 |
+
|
18 |
+
|
19 |
+
## π§ Intended Uses
|
20 |
+
|
21 |
+
- β
Resume parsing and candidate data extraction
|
22 |
+
- β
Applicant Tracking Systems (ATS)
|
23 |
+
- β
Automated HR screening tools
|
24 |
+
- β
Resume data analytics and visualization
|
25 |
+
- β
Chatbots and document understanding applications
|
26 |
+
|
27 |
+
---
|
28 |
+
|
29 |
+
## π« Limitations
|
30 |
+
|
31 |
+
- β Performance may degrade on resumes with non-standard formatting
|
32 |
+
- β Might not capture entities in handwritten or image-based resumes
|
33 |
+
- β May not generalize to other document types without re-training
|
34 |
+
|
35 |
+
---
|
36 |
+
|
37 |
+
## ποΈββοΈ Training Details
|
38 |
+
|
39 |
+
| Attribute | Value |
|
40 |
+
|--------------------|----------------------------------|
|
41 |
+
| Base Model | bert-base-cased |
|
42 |
+
| Dataset | Food-101-Dataset |
|
43 |
+
| Task Type | Token Classification (NER) |
|
44 |
+
| Epochs | 3 |
|
45 |
+
| Batch Size | 16 |
|
46 |
+
| Optimizer | AdamW |
|
47 |
+
| Loss Function | CrossEntropyLoss |
|
48 |
+
| Framework | PyTorch + Transformers |
|
49 |
+
| Hardware | CUDA-enabled GPU |
|
50 |
+
|
51 |
+
---
|
52 |
+
|
53 |
+
## π Evaluation Metrics
|
54 |
+
|
55 |
+
|
56 |
+
| Metric | Score |
|
57 |
+
| ----------------------------------------------- | ----- |
|
58 |
+
| Accuracy | 0.98 |
|
59 |
+
| F1-Score | 0.98 |
|
60 |
+
| Precision | 0.97 |
|
61 |
+
| Recall | 0.98 |
|
62 |
+
|
63 |
+
|
64 |
+
---
|
65 |
+
|
66 |
+
π Usage
|
67 |
+
```python
|
68 |
+
from datasets import load_dataset
|
69 |
+
from transformers import AutoTokenizer,
|
70 |
+
from transformers import AutoModelForTokenClassification,
|
71 |
+
from transformers import TrainingArguments, Trainer
|
72 |
+
from transformers import pipeline
|
73 |
+
|
74 |
+
|
75 |
+
# Load model and processor
|
76 |
+
model_name = "AventIQ-AI/Resume-Parsing-NER-AI-Model"
|
77 |
+
model = AutoModelForImageClassification.from_pretrained("bert-base-cased")
|
78 |
+
|
79 |
+
from transformers import pipeline
|
80 |
+
|
81 |
+
ner_pipe = pipeline("ner", model="./resume-ner-model", tokenizer="./resume-ner-model", aggregation_strategy="simple")
|
82 |
+
|
83 |
+
text = "John worked at Infosys as an Analyst. Email: [email protected]"
|
84 |
+
ner_results = ner_pipe(text)
|
85 |
+
|
86 |
+
for entity in ner_results:
|
87 |
+
print(f"{entity['word']} β {entity['entity_group']} ({entity['score']:.2f})")
|
88 |
+
label_list = [
|
89 |
+
"O", # 0
|
90 |
+
"B-NAME", # 1
|
91 |
+
"I-NAME", # 2
|
92 |
+
"B-EMAIL", # 3
|
93 |
+
"I-EMAIL", # 4
|
94 |
+
"B-PHONE", # 5
|
95 |
+
"I-PHONE", # 6
|
96 |
+
"B-EDUCATION", # 7
|
97 |
+
"I-EDUCATION", # 8
|
98 |
+
"B-SKILL", # 9
|
99 |
+
"I-SKILL", # 10
|
100 |
+
"B-COMPANY", # 11
|
101 |
+
"I-COMPANY", # 12
|
102 |
+
"B-JOB", # 13
|
103 |
+
"I-JOB" # 14
|
104 |
+
]
|
105 |
+
|
106 |
+
```
|
107 |
+
---
|
108 |
+
|
109 |
+
- π§© Quantization
|
110 |
+
- Post-training static quantization applied using PyTorch to reduce model size and accelerate inference on edge devices.
|
111 |
+
|
112 |
+
----
|
113 |
+
|
114 |
+
π Repository Structure
|
115 |
+
```
|
116 |
+
.
|
117 |
+
beans-vit-finetuned/
|
118 |
+
βββ config.json β
Model configuration
|
119 |
+
βββ pytorch_model.bin β
Fine-tuned model weights
|
120 |
+
βββ tokenizer_config.json β
Tokenizer configuration
|
121 |
+
βββ vocab.txt β
BERT vocabulary
|
122 |
+
βββ training_args.bin β
Training parameters
|
123 |
+
βββ preprocessor_config.json β
Optional tokenizer pre-processing info
|
124 |
+
βββ README.md β
Model card
|
125 |
+
|
126 |
+
```
|
127 |
+
---
|
128 |
+
π€ Contributing
|
129 |
+
|
130 |
+
Open to improvements and feedback! Feel free to submit a pull request or open an issue if you find any bugs or want to enhance the model.
|