Create README.md
Browse files
README.md
CHANGED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### **π SecureBERT Phishing Detection Model**
|
2 |
+
|
3 |
+
This repository hosts a fine-tuned **SecureBERT-based** model optimized for **phishing URL detection** using a cybersecurity dataset. The model classifies URLs as either **phishing (malicious)** or **safe (benign)**.
|
4 |
+
|
5 |
+
---
|
6 |
+
|
7 |
+
## **π Model Details**
|
8 |
+
|
9 |
+
- **Model Architecture**: SecureBERT (Based on BERT)
|
10 |
+
- **Task**: Binary Classification (Phishing vs. Safe)
|
11 |
+
- **Dataset**: shashwatwork/web-page-phishing-detection-dataset (11,431 URLs, 88 features)
|
12 |
+
- **Framework**: PyTorch & Hugging Face Transformers
|
13 |
+
- **Input Data**: URL strings & extracted numerical features
|
14 |
+
- **Number of Classes**: 2 (**Phishing, Safe**)
|
15 |
+
- **Quantization**: FP16 (for efficiency)
|
16 |
+
|
17 |
+
---
|
18 |
+
|
19 |
+
## **π Usage**
|
20 |
+
|
21 |
+
### **Installation**
|
22 |
+
|
23 |
+
```bash
|
24 |
+
pip install torch transformers scikit-learn pandas
|
25 |
+
```
|
26 |
+
|
27 |
+
### **Loading the Model**
|
28 |
+
|
29 |
+
```python
|
30 |
+
import torch
|
31 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
32 |
+
|
33 |
+
# Load the fine-tuned model and tokenizer
|
34 |
+
model_path = "./fine_tuned_SecureBERT"
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
36 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
37 |
+
model.eval() # Set model to evaluation mode
|
38 |
+
|
39 |
+
print("β
SecureBERT model loaded successfully and ready for inference!")
|
40 |
+
```
|
41 |
+
|
42 |
+
---
|
43 |
+
|
44 |
+
### **π Perform Phishing Detection**
|
45 |
+
|
46 |
+
```python
|
47 |
+
def predict_url(url):
|
48 |
+
# Tokenize input
|
49 |
+
encoding = tokenizer(url, truncation=True, padding=True, max_length=512, return_tensors="pt")
|
50 |
+
|
51 |
+
# Perform inference
|
52 |
+
with torch.no_grad():
|
53 |
+
output = model(**encoding)
|
54 |
+
|
55 |
+
# Get predicted class
|
56 |
+
predicted_class = torch.argmax(output.logits, dim=1).item()
|
57 |
+
|
58 |
+
# Map label
|
59 |
+
label = "Phishing" if predicted_class == 1 else "Safe"
|
60 |
+
return label
|
61 |
+
|
62 |
+
# Example usage
|
63 |
+
custom_url = "http://example.com/free-gift"
|
64 |
+
prediction = predict_url(custom_url)
|
65 |
+
print(f"Predicted label: {prediction}")
|
66 |
+
```
|
67 |
+
|
68 |
+
---
|
69 |
+
|
70 |
+
## **π Evaluation Results**
|
71 |
+
|
72 |
+
After fine-tuning, the model was evaluated on a **test set**, achieving the following performance:
|
73 |
+
|
74 |
+
| **Metric** | **Score** |
|
75 |
+
|------------------|-----------|
|
76 |
+
| **Accuracy** | 97.2% |
|
77 |
+
| **Precision** | 96.8% |
|
78 |
+
| **Recall** | 97.5% |
|
79 |
+
| **F1-Score** | 97.1% |
|
80 |
+
| **Inference Speed** | Fast (Optimized with FP16) |
|
81 |
+
|
82 |
+
---
|
83 |
+
|
84 |
+
## **π οΈ Fine-Tuning Details**
|
85 |
+
|
86 |
+
### **Dataset**
|
87 |
+
The model was trained on a **shashwatwork/web-page-phishing-detection-dataset** consisting of **11,431 URLs** labeled as either **phishing** or **safe**. Features include URL characteristics, domain properties, and additional metadata.
|
88 |
+
|
89 |
+
### **Training Configuration**
|
90 |
+
|
91 |
+
- **Number of epochs**: 5
|
92 |
+
- **Batch size**: 16
|
93 |
+
- **Optimizer**: AdamW
|
94 |
+
- **Learning rate**: 2e-5
|
95 |
+
- **Loss Function**: Cross-Entropy
|
96 |
+
- **Evaluation Strategy**: Validation at each epoch
|
97 |
+
|
98 |
+
### **Quantization**
|
99 |
+
The model was quantized using **FP16 precision**, reducing latency and memory usage while maintaining high accuracy.
|
100 |
+
|
101 |
+
---
|
102 |
+
|
103 |
+
## **β οΈ Limitations**
|
104 |
+
|
105 |
+
- **Evasion Techniques**: Attackers constantly evolve phishing techniques, which may reduce model effectiveness.
|
106 |
+
- **Dataset Bias**: The model was trained on a specific dataset; new phishing tactics may require retraining.
|
107 |
+
- **False Positives**: Some legitimate but unusual URLs might be classified as phishing.
|
108 |
+
|
109 |
+
---
|
110 |
+
|
111 |
+
β
**Use this fine-tuned SecureBERT model for accurate and efficient phishing detection!** ππ
|
112 |
+
|