Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🗣️ Speech-to-Text Model: Whisper Small (openai/whisper-small)
|
2 |
+
|
3 |
+
This repository demonstrates how to fine-tune, evaluate, quantize, and deploy the [OpenAI Whisper Small](https://huggingface.co/openai/whisper-small) model for automatic speech recognition (ASR).
|
4 |
+
|
5 |
+
---
|
6 |
+
|
7 |
+
## 📦 Model Used
|
8 |
+
|
9 |
+
- **Model Name**: `openai/whisper-small`
|
10 |
+
- **Architecture**: Transformer-based encoder-decoder
|
11 |
+
- **Task**: Automatic Speech Recognition (ASR)
|
12 |
+
- **Pretrained by**: OpenAI
|
13 |
+
|
14 |
+
---
|
15 |
+
|
16 |
+
## 🧾 Dataset
|
17 |
+
|
18 |
+
We use the [common_voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0) dataset from Hugging Face.
|
19 |
+
|
20 |
+
### 🔹 Load English Subset:
|
21 |
+
|
22 |
+
```python
|
23 |
+
from datasets import load_dataset
|
24 |
+
dataset = load_dataset("mozilla-foundation/common_voice_13_0", "en", split="train[:1%]")
|
25 |
+
```
|
26 |
+
|
27 |
+
# 🧠 Evaluation / Scoring (WER)
|
28 |
+
```python
|
29 |
+
|
30 |
+
from datasets import load_metric
|
31 |
+
import numpy as np
|
32 |
+
|
33 |
+
wer_metric = load_metric("wer")
|
34 |
+
|
35 |
+
def compute_wer(predictions, references):
|
36 |
+
return wer_metric.compute(predictions=predictions, references=references)
|
37 |
+
```
|
38 |
+
|
39 |
+
# 🎤 Inference Example
|
40 |
+
```python
|
41 |
+
|
42 |
+
from transformers import pipeline
|
43 |
+
|
44 |
+
pipe = pipeline("automatic-speech-recognition", model="./Speech_To_Text_OpenAIWhisper_Model", device=0)
|
45 |
+
|
46 |
+
result = pipe("harvard.wav")
|
47 |
+
print("Transcription:", result["text"])
|
48 |
+
```
|
49 |
+
|