DeepakKumarMSL commited on
Commit
9a0e59e
·
verified ·
1 Parent(s): f4a84af

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -0
README.md ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🗣️ Speech-to-Text Model: Whisper Small (openai/whisper-small)
2
+
3
+ This repository demonstrates how to fine-tune, evaluate, quantize, and deploy the [OpenAI Whisper Small](https://huggingface.co/openai/whisper-small) model for automatic speech recognition (ASR).
4
+
5
+ ---
6
+
7
+ ## 📦 Model Used
8
+
9
+ - **Model Name**: `openai/whisper-small`
10
+ - **Architecture**: Transformer-based encoder-decoder
11
+ - **Task**: Automatic Speech Recognition (ASR)
12
+ - **Pretrained by**: OpenAI
13
+
14
+ ---
15
+
16
+ ## 🧾 Dataset
17
+
18
+ We use the [common_voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0) dataset from Hugging Face.
19
+
20
+ ### 🔹 Load English Subset:
21
+
22
+ ```python
23
+ from datasets import load_dataset
24
+ dataset = load_dataset("mozilla-foundation/common_voice_13_0", "en", split="train[:1%]")
25
+ ```
26
+
27
+ # 🧠 Evaluation / Scoring (WER)
28
+ ```python
29
+
30
+ from datasets import load_metric
31
+ import numpy as np
32
+
33
+ wer_metric = load_metric("wer")
34
+
35
+ def compute_wer(predictions, references):
36
+ return wer_metric.compute(predictions=predictions, references=references)
37
+ ```
38
+
39
+ # 🎤 Inference Example
40
+ ```python
41
+
42
+ from transformers import pipeline
43
+
44
+ pipe = pipeline("automatic-speech-recognition", model="./Speech_To_Text_OpenAIWhisper_Model", device=0)
45
+
46
+ result = pipe("harvard.wav")
47
+ print("Transcription:", result["text"])
48
+ ```
49
+