# ๐Ÿง  TextSummarizerForInventoryReport-T5 A T5-based text summarization model fine-tuned on inventory report data. This model generates concise summaries of detailed inventory-related texts, making it useful for warehouse management, stock reporting, and supply chain documentation. ## โœจ Model Highlights - ๐Ÿ“Œ Based on t5-small from Hugging Face ๐Ÿค— - ๐Ÿ” Fine-tuned on structured inventory report data (report_text โ†’ summary_text) - ๐Ÿ“‹ Generates meaningful and human-readable summaries - โšก Supports maximum input length of 512 tokens and output length of 128 tokens - ๐Ÿง  Built using Hugging Face Transformers and PyTorch --- ## ๐Ÿง  Intended Uses - โœ… Inventory report summarization - โœ… Warehouse/logistics management automation - โœ… Business analytics and reporting dashboards ## ๐Ÿšซ Limitations - โŒ Not optimized for very long reports (>512 tokens) - ๐ŸŒ Trained primarily on English-language technical/business reports - ๐Ÿงพ Performance may degrade on unstructured or noisy input text - ๐Ÿค” Not designed for creative or narrative summarization ## ๐Ÿ‹๏ธโ€โ™‚๏ธ Training Details | Attribute | Value | |-------------------|----------------------------------------| | Base Model | t5-small | | Dataset | Custom inventory reports | | Max Input Tokens | 512 | | Max Output Tokens | 128 | | Epochs | 3 | | Batch Size | 2 | | Optimizer | AdamW | | Loss Function |CrossEntropyLosS(with -100 padding mask)| | Framework | PyTorch + Hugging Face Transformers | | Hardware | CUDA-enabled GPU | --- ## ๐Ÿš€ Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments from datasets import Dataset import torch import torch.nn.functional as F model_name = "AventIQ-AI/Text_Summarization_For_inventory_Report" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) model.eval() def preprocess(example): input_text = "summarize: " + example["full_text"] input_enc = tokenizer(input_text, truncation=True, padding="max_length", max_length=512) target_enc = tokenizer(example["summary"], truncation=True, padding="max_length", max_length=64) input_enc["labels"] = target_enc["input_ids"] return input_enc # Generate summary summary = summarize(long_text, model, tokenizer) print("Summary:", summary) ``` ## Repository Structure ``` . โ”œโ”€โ”€ model/ # Contains the quantized model files โ”œโ”€โ”€ tokenizer_config/ # Tokenizer configuration and vocabulary files โ”œโ”€โ”€ model.safensors/ # Fine Tuned Model โ”œโ”€โ”€ README.md # Model documentation ``` ๐Ÿค Contributing Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions, improvements, or want to adapt the model to new domains.