Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
# 🎯 Tone Detection using `
|
2 |
|
3 |
-
This project demonstrates how to perform **Tone Detection** using the [`
|
4 |
|
5 |
This approach enables you to classify emotional tone (e.g., Positive, Negative, Neutral, etc.) **without training**, by framing it as a textual entailment task.
|
6 |
|
@@ -8,9 +8,9 @@ This approach enables you to classify emotional tone (e.g., Positive, Negative,
|
|
8 |
|
9 |
## 📌 Model Details
|
10 |
|
11 |
-
- **Model:** `
|
12 |
-
- **Task:**
|
13 |
-
- **Approach:** Checks if the input sentence entails a hypothesis (e.g., "
|
14 |
- **Strength:** No labeled training data required
|
15 |
|
16 |
---
|
@@ -29,7 +29,7 @@ dataset = load_dataset("go_emotions")
|
|
29 |
```Python
|
30 |
from transformers import pipeline
|
31 |
|
32 |
-
classifier = pipeline("zero-shot-classification", model="
|
33 |
|
34 |
labels = ["positive", "neutral", "negative"]
|
35 |
|
|
|
1 |
+
# 🎯 Tone Detection using `yiyanghkust/finbert-tone`
|
2 |
|
3 |
+
This project demonstrates how to perform **Tone Detection** using the [`yiyanghkust/finbert-tone`].
|
4 |
|
5 |
This approach enables you to classify emotional tone (e.g., Positive, Negative, Neutral, etc.) **without training**, by framing it as a textual entailment task.
|
6 |
|
|
|
8 |
|
9 |
## 📌 Model Details
|
10 |
|
11 |
+
- **Model:** `yiyanghkust/finbert-tone`
|
12 |
+
- **Task:** Detect the tone of financial text
|
13 |
+
- **Approach:** Checks if the input sentence entails a hypothesis (e.g., "Positive" or Negative)
|
14 |
- **Strength:** No labeled training data required
|
15 |
|
16 |
---
|
|
|
29 |
```Python
|
30 |
from transformers import pipeline
|
31 |
|
32 |
+
classifier = pipeline("zero-shot-classification", model="yiyanghkust/finbert-tone")
|
33 |
|
34 |
labels = ["positive", "neutral", "negative"]
|
35 |
|