DeepakKumarMSL commited on
Commit
1ffe627
·
verified ·
1 Parent(s): 9c3068d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -1,6 +1,6 @@
1
- # 🎯 Tone Detection using `facebook/bart-large-mnli` (Zero-Shot Classification)
2
 
3
- This project demonstrates how to perform **Tone Detection** using the [`facebook/bart-large-mnli`](https://huggingface.co/facebook/bart-large-mnli) model through **zero-shot classification** based on Natural Language Inference (NLI).
4
 
5
  This approach enables you to classify emotional tone (e.g., Positive, Negative, Neutral, etc.) **without training**, by framing it as a textual entailment task.
6
 
@@ -8,9 +8,9 @@ This approach enables you to classify emotional tone (e.g., Positive, Negative,
8
 
9
  ## 📌 Model Details
10
 
11
- - **Model:** `facebook/bart-large-mnli`
12
- - **Task:** Zero-shot classification via NLI
13
- - **Approach:** Checks if the input sentence entails a hypothesis (e.g., "This text expresses anger.")
14
  - **Strength:** No labeled training data required
15
 
16
  ---
@@ -29,7 +29,7 @@ dataset = load_dataset("go_emotions")
29
  ```Python
30
  from transformers import pipeline
31
 
32
- classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
33
 
34
  labels = ["positive", "neutral", "negative"]
35
 
 
1
+ # 🎯 Tone Detection using `yiyanghkust/finbert-tone`
2
 
3
+ This project demonstrates how to perform **Tone Detection** using the [`yiyanghkust/finbert-tone`].
4
 
5
  This approach enables you to classify emotional tone (e.g., Positive, Negative, Neutral, etc.) **without training**, by framing it as a textual entailment task.
6
 
 
8
 
9
  ## 📌 Model Details
10
 
11
+ - **Model:** `yiyanghkust/finbert-tone`
12
+ - **Task:** Detect the tone of financial text
13
+ - **Approach:** Checks if the input sentence entails a hypothesis (e.g., "Positive" or Negative)
14
  - **Strength:** No labeled training data required
15
 
16
  ---
 
29
  ```Python
30
  from transformers import pipeline
31
 
32
+ classifier = pipeline("zero-shot-classification", model="yiyanghkust/finbert-tone")
33
 
34
  labels = ["positive", "neutral", "negative"]
35