Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Model Details
|
2 |
+
|
3 |
+
**Model Name:** Employee behaviour Analysis Model\
|
4 |
+
**Base Model:** distilbert-base-uncased\
|
5 |
+
**Dataset:** yelp_review_full
|
6 |
+
|
7 |
+
**Training Device:** CUDA (GPU)
|
8 |
+
|
9 |
+
---
|
10 |
+
|
11 |
+
## Dataset Information
|
12 |
+
|
13 |
+
**Dataset Structure:**\
|
14 |
+
DatasetDict({\
|
15 |
+
train: Dataset({\
|
16 |
+
features: ['employee\_feedback', 'behavior\_category'],\
|
17 |
+
num\_rows: 50,000\
|
18 |
+
})\
|
19 |
+
validation: Dataset({\
|
20 |
+
features: ['employee\_feedback', 'behavior\_category'],\
|
21 |
+
num\_rows: 20,000\
|
22 |
+
})\
|
23 |
+
})
|
24 |
+
|
25 |
+
**Available Splits:**
|
26 |
+
|
27 |
+
- **Train:** 15,000 examples
|
28 |
+
- **Validation:** 2,000 examples
|
29 |
+
|
30 |
+
**Feature Representation:**
|
31 |
+
|
32 |
+
- **employee\_feedback:** Textual feedback from employees (e.g., "The team is highly collaborative and supportive.")
|
33 |
+
- **behavior\_category:** Classified behavior type (e.g., "Positive Collaboration")
|
34 |
+
|
35 |
+
---
|
36 |
+
|
37 |
+
## Training Details
|
38 |
+
|
39 |
+
**Training Process:**
|
40 |
+
|
41 |
+
- Fine-tuned for 3 epochs
|
42 |
+
- Loss reduced progressively across epochs
|
43 |
+
|
44 |
+
**Hyperparameters:**
|
45 |
+
|
46 |
+
- Epochs: 3
|
47 |
+
- Learning Rate: 3e-5
|
48 |
+
- Batch Size: 8
|
49 |
+
- Weight Decay: 0.01
|
50 |
+
- Mixed Precision: FP16
|
51 |
+
|
52 |
+
**Performance Metrics:**
|
53 |
+
|
54 |
+
- Accuracy: 92.3%
|
55 |
+
|
56 |
+
---
|
57 |
+
|
58 |
+
## Inference Example
|
59 |
+
|
60 |
+
```python
|
61 |
+
import torch
|
62 |
+
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
63 |
+
|
64 |
+
def load_model(model_path):
|
65 |
+
tokenizer = DistilBertTokenizer.from_pretrained(model_path)
|
66 |
+
model = DistilBertForSequenceClassification.from_pretrained(model_path).half()
|
67 |
+
model.eval()
|
68 |
+
return model, tokenizer
|
69 |
+
|
70 |
+
def classify_behavior(feedback, model, tokenizer, device="cuda"):
|
71 |
+
inputs = tokenizer(
|
72 |
+
feedback,
|
73 |
+
max_length=256,
|
74 |
+
padding="max_length",
|
75 |
+
truncation=True,
|
76 |
+
return_tensors="pt"
|
77 |
+
).to(device)
|
78 |
+
outputs = model(**inputs)
|
79 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
80 |
+
return predicted_class
|
81 |
+
|
82 |
+
# Example usage
|
83 |
+
if __name__ == "__main__":
|
84 |
+
model_path = "your-username/employee-behavior-analysis" # Replace with your HF repo
|
85 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
86 |
+
model, tokenizer = load_model(model_path)
|
87 |
+
model.to(device)
|
88 |
+
|
89 |
+
feedback = "The team is highly collaborative and supportive."
|
90 |
+
category = classify_behavior(feedback, model, tokenizer, device)
|
91 |
+
print(f"Feedback: {feedback}")
|
92 |
+
print(f"Predicted Behavior Category: {category}")
|
93 |
+
```
|
94 |
+
|
95 |
+
**Expected Output:**
|
96 |
+
|
97 |
+
```
|
98 |
+
Feedback: The team is highly collaborative and supportive.
|
99 |
+
Predicted Behavior Category: Positive Collaboration
|
100 |
+
```
|
101 |
+
|
102 |
+
---
|
103 |
+
|
104 |
+
# Use Case: Employee Behavior Analysis Model
|
105 |
+
|
106 |
+
## **Overview**
|
107 |
+
|
108 |
+
The Employee Behavior Analysis Model, built on **DistilBERT-base-uncased**, is designed to classify employee feedback into predefined behavior categories. This helps HR and management teams analyze workforce sentiment and improve workplace culture.
|
109 |
+
|
110 |
+
## **Key Applications**
|
111 |
+
|
112 |
+
- **Sentiment & Engagement Analysis:** Identify trends in employee feedback to assess workplace satisfaction.
|
113 |
+
- **Performance Review Assistance:** Automate categorization of peer reviews to streamline HR evaluation.
|
114 |
+
- **Conflict Resolution:** Detect negative patterns in feedback to address workplace conflicts proactively.
|
115 |
+
- **Leadership Assessment:** Analyze feedback about managers and team leaders to enhance leadership training.
|
116 |
+
|
117 |
+
## **Benefits**
|
118 |
+
|
119 |
+
- **Scalability:** Can process thousands of employee responses in minutes.
|
120 |
+
- **Objective Analysis:** Reduces bias by using AI-driven classification.
|
121 |
+
- **Actionable Insights:** Helps HR teams make data-driven decisions.
|
122 |
+
|
123 |
+
## **Future Improvements**
|
124 |
+
|
125 |
+
- Expand dataset with more diverse employee feedback sources.
|
126 |
+
- Fine-tune with additional behavioral categories for nuanced classification.
|
127 |
+
- Integrate with company HR software for real-time feedback analysis.
|
128 |
+
|
129 |
+
---
|
130 |
+
|