varshamishra commited on
Commit
78e5298
·
verified ·
1 Parent(s): cc8aa4c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +130 -0
README.md ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model Details
2
+
3
+ **Model Name:** Employee behaviour Analysis Model\
4
+ **Base Model:** distilbert-base-uncased\
5
+ **Dataset:** yelp_review_full
6
+
7
+ **Training Device:** CUDA (GPU)
8
+
9
+ ---
10
+
11
+ ## Dataset Information
12
+
13
+ **Dataset Structure:**\
14
+ DatasetDict({\
15
+ train: Dataset({\
16
+ features: ['employee\_feedback', 'behavior\_category'],\
17
+ num\_rows: 50,000\
18
+ })\
19
+ validation: Dataset({\
20
+ features: ['employee\_feedback', 'behavior\_category'],\
21
+ num\_rows: 20,000\
22
+ })\
23
+ })
24
+
25
+ **Available Splits:**
26
+
27
+ - **Train:** 15,000 examples
28
+ - **Validation:** 2,000 examples
29
+
30
+ **Feature Representation:**
31
+
32
+ - **employee\_feedback:** Textual feedback from employees (e.g., "The team is highly collaborative and supportive.")
33
+ - **behavior\_category:** Classified behavior type (e.g., "Positive Collaboration")
34
+
35
+ ---
36
+
37
+ ## Training Details
38
+
39
+ **Training Process:**
40
+
41
+ - Fine-tuned for 3 epochs
42
+ - Loss reduced progressively across epochs
43
+
44
+ **Hyperparameters:**
45
+
46
+ - Epochs: 3
47
+ - Learning Rate: 3e-5
48
+ - Batch Size: 8
49
+ - Weight Decay: 0.01
50
+ - Mixed Precision: FP16
51
+
52
+ **Performance Metrics:**
53
+
54
+ - Accuracy: 92.3%
55
+
56
+ ---
57
+
58
+ ## Inference Example
59
+
60
+ ```python
61
+ import torch
62
+ from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
63
+
64
+ def load_model(model_path):
65
+ tokenizer = DistilBertTokenizer.from_pretrained(model_path)
66
+ model = DistilBertForSequenceClassification.from_pretrained(model_path).half()
67
+ model.eval()
68
+ return model, tokenizer
69
+
70
+ def classify_behavior(feedback, model, tokenizer, device="cuda"):
71
+ inputs = tokenizer(
72
+ feedback,
73
+ max_length=256,
74
+ padding="max_length",
75
+ truncation=True,
76
+ return_tensors="pt"
77
+ ).to(device)
78
+ outputs = model(**inputs)
79
+ predicted_class = torch.argmax(outputs.logits, dim=1).item()
80
+ return predicted_class
81
+
82
+ # Example usage
83
+ if __name__ == "__main__":
84
+ model_path = "your-username/employee-behavior-analysis" # Replace with your HF repo
85
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
86
+ model, tokenizer = load_model(model_path)
87
+ model.to(device)
88
+
89
+ feedback = "The team is highly collaborative and supportive."
90
+ category = classify_behavior(feedback, model, tokenizer, device)
91
+ print(f"Feedback: {feedback}")
92
+ print(f"Predicted Behavior Category: {category}")
93
+ ```
94
+
95
+ **Expected Output:**
96
+
97
+ ```
98
+ Feedback: The team is highly collaborative and supportive.
99
+ Predicted Behavior Category: Positive Collaboration
100
+ ```
101
+
102
+ ---
103
+
104
+ # Use Case: Employee Behavior Analysis Model
105
+
106
+ ## **Overview**
107
+
108
+ The Employee Behavior Analysis Model, built on **DistilBERT-base-uncased**, is designed to classify employee feedback into predefined behavior categories. This helps HR and management teams analyze workforce sentiment and improve workplace culture.
109
+
110
+ ## **Key Applications**
111
+
112
+ - **Sentiment & Engagement Analysis:** Identify trends in employee feedback to assess workplace satisfaction.
113
+ - **Performance Review Assistance:** Automate categorization of peer reviews to streamline HR evaluation.
114
+ - **Conflict Resolution:** Detect negative patterns in feedback to address workplace conflicts proactively.
115
+ - **Leadership Assessment:** Analyze feedback about managers and team leaders to enhance leadership training.
116
+
117
+ ## **Benefits**
118
+
119
+ - **Scalability:** Can process thousands of employee responses in minutes.
120
+ - **Objective Analysis:** Reduces bias by using AI-driven classification.
121
+ - **Actionable Insights:** Helps HR teams make data-driven decisions.
122
+
123
+ ## **Future Improvements**
124
+
125
+ - Expand dataset with more diverse employee feedback sources.
126
+ - Fine-tune with additional behavioral categories for nuanced classification.
127
+ - Integrate with company HR software for real-time feedback analysis.
128
+
129
+ ---
130
+