developerPushkal commited on
Commit
2c517b8
Β·
verified Β·
1 Parent(s): 0fb45fe

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # BERT-Base-Uncased Quantized Model for Twitter Tweet Sentiment Classification
2
+
3
+ This repository hosts a quantized version of the **T5-Base** model, fine-tuned for **Movie Script Writting**. The model is optimized for efficient deployment while maintaining high accuracy, making it suitable for resource-constrained environments such as mobile and edge devices.
4
+
5
+ ## Model Details
6
+
7
+ - **Model Architecture:** T5-Base
8
+ - **Task:** Movie Script Writting
9
+ - **Dataset:** bookcorpus
10
+ - **Quantization:** Float16 (FP16)
11
+ - **Fine-tuning Framework:** Hugging Face Transformers
12
+ - **Inference Framework:** PyTorch
13
+
14
+ ## Usage
15
+
16
+ ### Installation
17
+
18
+ ```sh
19
+ pip install transformers torch
20
+ ```
21
+
22
+ ### Loading the Model
23
+
24
+ ```python
25
+ from transformers import BertForSequenceClassification, BertTokenizer
26
+ import torch
27
+
28
+ # Load quantized model
29
+ quantized_model_path = "path/to/bert_finetuned_fp16"
30
+
31
+
32
+ def generate_script(prompt):
33
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Check available device
34
+ model.to(device) # Move model to the appropriate device
35
+
36
+ inputs = tokenizer(f"Generate a movie script: {prompt}", return_tensors="pt", truncation=True, padding="max_length", max_length=256)
37
+ inputs = {key: value.to(device) for key, value in inputs.items()} # Move inputs to same device as model
38
+
39
+ with torch.no_grad():
40
+ outputs = model.generate(**inputs, max_length=256, num_return_sequences=1)
41
+
42
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
43
+
44
+ # Test the script generator
45
+ prompt = "SCENE: EXT. DARK ALLEY - NIGHT"
46
+ print(generate_script(prompt))
47
+
48
+
49
+ ## Performance Metrics
50
+
51
+ - **Accuracy:** 0.82
52
+ - **Inference Speed:** Faster due to FP16 quantization
53
+
54
+ ## Fine-Tuning Details
55
+
56
+ ### Dataset
57
+
58
+
59
+
60
+ ### Training Configuration
61
+
62
+ - **Number of epochs:** 3
63
+ - **Batch size:** 8
64
+ - **Evaluation strategy:** Per epoch
65
+ - **Learning rate:** 2e-5
66
+ - **Optimizer:** AdamW
67
+
68
+ ### Quantization
69
+
70
+ The model is quantized using **Post-Training Quantization (PTQ)** with **Float16 (FP16)**, which reduces model size and improves inference efficiency while maintaining accuracy.
71
+
72
+ ## Repository Structure
73
+
74
+ ```
75
+ .
76
+ β”œβ”€β”€ model/ # Contains the quantized model files
77
+ β”œβ”€β”€ tokenizer_config/ # Tokenizer configuration and vocabulary files
78
+ β”œβ”€β”€ model.safensors/ # Fine-tuned and quantized model
79
+ β”œβ”€β”€ README.md # Model documentation
80
+ ```
81
+
82
+ ## Limitations
83
+
84
+ - The model is optimized for English-language next-word prediction tasks.
85
+ - While quantization improves speed, minor accuracy degradation may occur.
86
+ - Performance on out-of-distribution text (e.g., highly technical or domain-specific data) may be limited.
87
+
88
+ ## Contributing
89
+
90
+ Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.
91
+ ``
92
+