Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
+
import torch
|
3 |
+
|
4 |
+
# Set device
|
5 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
6 |
+
|
7 |
+
# Model and tokenizer
|
8 |
+
model_name = "AventIQ-AI/gpt2-lmheadmodel-next-line-prediction-model"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
11 |
+
|
12 |
+
import html
|
13 |
+
|
14 |
+
# Define test text
|
15 |
+
sample_text = "Artificial intelligence is transforming"
|
16 |
+
|
17 |
+
# Tokenize input
|
18 |
+
inputs = tokenizer(sample_text, return_tensors="pt").to(device)
|
19 |
+
|
20 |
+
# Generate prediction
|
21 |
+
with torch.no_grad():
|
22 |
+
output_tokens = model.generate(
|
23 |
+
**inputs,
|
24 |
+
max_length=50,
|
25 |
+
num_beams=5,
|
26 |
+
repetition_penalty=1.5,
|
27 |
+
temperature=0.7,
|
28 |
+
top_k=50,
|
29 |
+
top_p=0.9,
|
30 |
+
do_sample=True,
|
31 |
+
no_repeat_ngram_size=2,
|
32 |
+
num_return_sequences=1,
|
33 |
+
early_stopping=True,
|
34 |
+
length_penalty=1.0,
|
35 |
+
pad_token_id=tokenizer.eos_token_id,
|
36 |
+
eos_token_id=tokenizer.eos_token_id,
|
37 |
+
return_dict_in_generate=True,
|
38 |
+
output_scores=True
|
39 |
+
)
|
40 |
+
|
41 |
+
# Decode and clean response
|
42 |
+
generated_response = tokenizer.decode(output_tokens.sequences[0], skip_special_tokens=True)
|
43 |
+
cleaned_response = html.unescape(generated_response).replace("#39;", "'").replace("quot;", '"')
|
44 |
+
|
45 |
+
print("\nGenerated Response:\n", cleaned_response)
|
46 |
+
|
47 |
+
## GPT-2 for Next-line Prediction
|
48 |
+
|
49 |
+
This repository hosts a fine-tuned GPT-2 model optimized for **next-line prediction** tasks. The model has been fine-tuned on the **OpenWebText** dataset and quantized in **FP16** format to enhance efficiency without compromising performance.
|
50 |
+
|
51 |
+
## Model Details
|
52 |
+
|
53 |
+
- **Model Architecture:** GPT-2 (Causal Language Model)
|
54 |
+
- **Task:** Next-line Prediction
|
55 |
+
- **Dataset:** OpenWebText (subset: `stas/openwebtext-10k`)
|
56 |
+
- **Quantization:** FP16 for reduced model size and faster inference
|
57 |
+
- **Fine-tuning Framework:** Hugging Face Transformers
|
58 |
+
|
59 |
+
## Training Details
|
60 |
+
|
61 |
+
- **Number of Epochs:** 3
|
62 |
+
- **Batch Size:** 4
|
63 |
+
- **Evaluation Strategy:** Epoch
|
64 |
+
- **Learning Rate:** 5e-5
|
65 |
+
|
66 |
+
## Evaluation Metrics (Perplexity Score)
|
67 |
+
Perplexity Score: 14.355693817138672
|
68 |
+
|
69 |
+
## Limitations
|
70 |
+
|
71 |
+
- The model is optimized for English-language next-word prediction tasks.
|
72 |
+
- While quantization improves speed, minor accuracy degradation may occur.
|
73 |
+
- Performance on out-of-distribution text (e.g., highly technical or domain-specific data) may be limited.
|
74 |
+
|
75 |
+
## Usage Instructions
|
76 |
+
|
77 |
+
### Installation
|
78 |
+
|
79 |
+
```sh
|
80 |
+
pip install transformers torch
|
81 |
+
```
|
82 |
+
|
83 |
+
### Loading the Model in Python
|
84 |
+
|
85 |
+
```python
|
86 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
87 |
+
import torch
|
88 |
+
|
89 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
90 |
+
|
91 |
+
model_name = "AventIQ-AI/gpt2-lmheadmodel-next-line-prediction-model"
|
92 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
93 |
+
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
94 |
+
```
|
95 |
+
|
96 |
+
## Repository Structure
|
97 |
+
|
98 |
+
```
|
99 |
+
.
|
100 |
+
βββ model/ # Contains the quantized model files
|
101 |
+
βββ tokenizer_config/ # Tokenizer configuration and vocabulary files
|
102 |
+
βββ model.safetensors/ # Quantized Model
|
103 |
+
βββ README.md # Model documentation
|
104 |
+
```
|
105 |
+
|
106 |
+
## Contributing
|
107 |
+
|
108 |
+
Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.
|