Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### **๐ฉบ ResNet-18 Cataract Detection System**
|
2 |
+
|
3 |
+
This repository hosts a quantized version of **ResNet-18-based** model optimized for **cataract detection** having two labels either normal or cataract. The model detects images into these 2 labels.
|
4 |
+
|
5 |
+
---
|
6 |
+
|
7 |
+
## **๐ Model Details**
|
8 |
+
|
9 |
+
- **Model Architecture**: ResNet-18
|
10 |
+
- **Task**: Cataract Detection System
|
11 |
+
- **Dataset**: Cataract Dataset ([Kaggle](https://www.kaggle.com/datasets/nandanp6/cataract-image-dataset))
|
12 |
+
- **Framework**: PyTorch
|
13 |
+
- **Input Image Size**: 224x224
|
14 |
+
- **Number of Classes**: 2
|
15 |
+
---
|
16 |
+
|
17 |
+
## **๐ Usage**
|
18 |
+
|
19 |
+
### **Installation**
|
20 |
+
|
21 |
+
```bash
|
22 |
+
pip install torch torchvision pillow
|
23 |
+
```
|
24 |
+
|
25 |
+
### **Loading the Model**
|
26 |
+
|
27 |
+
```python
|
28 |
+
import torch
|
29 |
+
import torchvision.models as models
|
30 |
+
from huggingface_hub import hf_hub_download
|
31 |
+
import json
|
32 |
+
from PIL import Image
|
33 |
+
import torchvision.transforms as transforms
|
34 |
+
|
35 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
36 |
+
|
37 |
+
weights_path = hf_hub_download(repo_id="AventIQ-AI/resnet18-cataract-detection-system", filename="cataract_detection_resnet18_quantized.pth")
|
38 |
+
labels_path = hf_hub_download(repo_id="AventIQ-AI/resnet18-cataract-detection-system", filename="class_names.json")
|
39 |
+
|
40 |
+
with open(labels_path, "r") as f:
|
41 |
+
class_labels = json.load(f)
|
42 |
+
|
43 |
+
model = models.resnet18(pretrained=False)
|
44 |
+
|
45 |
+
num_classes = len(class_labels)
|
46 |
+
model.fc = torch.nn.Linear(in_features=512, out_features=num_classes)
|
47 |
+
|
48 |
+
model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu')))
|
49 |
+
|
50 |
+
model.eval()
|
51 |
+
|
52 |
+
print("Model loaded successfully!")
|
53 |
+
```
|
54 |
+
|
55 |
+
---
|
56 |
+
|
57 |
+
### **๐ Perform Classification**
|
58 |
+
|
59 |
+
```python
|
60 |
+
|
61 |
+
transform = transforms.Compose([
|
62 |
+
transforms.Resize((224, 224)),
|
63 |
+
transforms.ToTensor(),
|
64 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
65 |
+
])
|
66 |
+
|
67 |
+
def predict_image(image_path):
|
68 |
+
image = Image.open(image_path).convert("RGB")
|
69 |
+
image = transform(image).unsqueeze(0).to(device) # Add batch dimension
|
70 |
+
|
71 |
+
with torch.no_grad():
|
72 |
+
outputs = model(image)
|
73 |
+
_, predicted_class = torch.max(outputs, 1)
|
74 |
+
|
75 |
+
predicted_label = class_labels[predicted_class.item()]
|
76 |
+
print(f"Predicted Class: {predicted_label}")
|
77 |
+
|
78 |
+
# Example usage:
|
79 |
+
image_path = "your_image_path"
|
80 |
+
predict_image(image_path)
|
81 |
+
```
|
82 |
+
|
83 |
+
## **๐ Evaluation Results**
|
84 |
+
|
85 |
+
After fine-tuning, the model was evaluated on the **Chest X-ray Pneumonia Dataset**, achieving the following performance:
|
86 |
+
|
87 |
+
| **Metric** | **Score** |
|
88 |
+
|------------------|----------|
|
89 |
+
| **Accuracy** | 97.52% |
|
90 |
+
| **Precision** | 98.31% |
|
91 |
+
| **Recall** | 96.67% |
|
92 |
+
| **F1-Score** | 97.48% |
|
93 |
+
|
94 |
+
---
|
95 |
+
|
96 |
+
## **๐ง Fine-Tuning Details**
|
97 |
+
|
98 |
+
### **Dataset**
|
99 |
+
The model was trained on **Cataract Dataset** having two labels.
|
100 |
+
|
101 |
+
### **Training Configuration**
|
102 |
+
|
103 |
+
- **Number of epochs**: 10
|
104 |
+
- **Batch size**: 32
|
105 |
+
- **Optimizer**: Adam
|
106 |
+
- **Learning rate**: 1e-4
|
107 |
+
- **Loss Function**: Cross-Entropy
|
108 |
+
- **Evaluation Strategy**: Validation at each epoch
|
109 |
+
---
|
110 |
+
|
111 |
+
## **โ ๏ธ Limitations**
|
112 |
+
|
113 |
+
- **Misclassification risk**: The model may produce **false positives or false negatives**. Always verify results with a radiologist.
|
114 |
+
- **Dataset bias**: Performance may be affected by **dataset distribution**. It may not generalize well to **different populations**.
|
115 |
+
- **Black-box nature**: Like all deep learning models, it does not explain why a prediction was made.
|
116 |
+
|
117 |
+
---
|