AmanSengar commited on
Commit
3802374
·
verified ·
1 Parent(s): dbe16d4

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -0
README.md ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.utils.data import Dataset, DataLoader
3
+ from torch.optim import AdamW
4
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
5
+ import torch.nn.functional as F
6
+
7
+ MODEL = "AventIQ-AI/sentiment-analysis-for-user-reviews-sentiment"
8
+ tokenizer = AutoTokenizer.from_pretrained(MODEL)
9
+ model = AutoModelForSequenceClassification.from_pretrained(MODEL,num_labels=2,ignore_mismatched_sizes=True)
10
+
11
+
12
+ def predict(text):
13
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
14
+ with torch.no_grad():
15
+ outputs = quantize_model(**inputs)
16
+ probs = F.softmax(outputs.logits, dim=1)
17
+ pred = torch.argmax(probs, dim=1).item()
18
+ label_map = {0: "Negative", 1: "Neutral", 2: "Positive"}
19
+ return f"Sentiment: {label_map[pred]} (Confidence: {probs[0][pred]:.2f})"
20
+
21
+ # Test predictions
22
+ print("\nTest Predictions:")
23
+ print(predict("the product quality is just so so"))