developerPushkal commited on
Commit
7da1b58
·
verified ·
1 Parent(s): ea252ff

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # T5-Small for News Headline Generation
2
+ This is a T5-Small model fine-tuned for generating concise and informative news topics from content summaries. It is useful for news agencies, content creators, and media professionals to generate headlines efficiently.
3
+
4
+ # Model Details
5
+ **Model Type:** Sequence-to-Sequence Transformer
6
+ **Base Model:** t5-small
7
+ **Maximum Sequence Length:** 128 tokens (input and output)
8
+ **Output:** News headlines based on input summaries
9
+ **Task:** Text Summarization (Headline Generation)
10
+
11
+ # Model Sources
12
+ **Documentation:** T5 Model Documentation
13
+ **Repository:** Hugging Face Model Hub
14
+ **Hugging Face Model:** Available on Hugging Face
15
+
16
+ # Full Model Architecture
17
+ ```
18
+ T5ForConditionalGeneration(
19
+ (shared): Embedding(32128, 512)
20
+ (encoder): T5Stack(
21
+ (embed_tokens): Embedding(32128, 512)
22
+ (block): ModuleList(...)
23
+ (final_layer_norm): LayerNorm((512,), eps=1e-12)
24
+ (dropout): Dropout(p=0.1)
25
+ )
26
+ (decoder): T5Stack(
27
+ (embed_tokens): Embedding(32128, 512)
28
+ (block): ModuleList(...)
29
+ (final_layer_norm): LayerNorm((512,), eps=1e-12)
30
+ (dropout): Dropout(p=0.1)
31
+ )
32
+ (lm_head): Linear(in_features=512, out_features=32128, bias=False)
33
+ )
34
+ ```
35
+
36
+ # Installation and Setup
37
+ ```bash
38
+ pip install -U transformers torch datasets
39
+ ```
40
+
41
+ # Load the Model and Run Inference
42
+ ```python
43
+ from transformers import T5ForConditionalGeneration, T5Tokenizer
44
+ import torch
45
+
46
+ # Model Name
47
+ model_name = "your_fine_tuned_model_id"
48
+ tokenizer = T5Tokenizer.from_pretrained(model_name)
49
+ model = T5ForConditionalGeneration.from_pretrained(model_name)
50
+
51
+ # Move model to GPU if available
52
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
53
+ model.to(device)
54
+
55
+ # Inference
56
+ news_summary = "Ministry of Education has announced a major reform in the national curriculum to enhance digital literacy among students."
57
+ inputs = tokenizer(news_summary, max_length=128, truncation=True, padding="max_length", return_tensors="pt").to(device)
58
+ outputs = model.generate(
59
+ input_ids=inputs["input_ids"],
60
+ attention_mask=inputs["attention_mask"],
61
+ max_length=20,
62
+ num_beams=5,
63
+ early_stopping=True
64
+ )
65
+ headline = tokenizer.decode(outputs[0], skip_special_tokens=True)
66
+ print(f"Generated Headline: {headline}")
67
+ ```
68
+
69
+ # Training Details
70
+ ### Training Dataset
71
+ **Dataset Name:** News Headlines Dataset
72
+ **Size:** 30,000 rows
73
+ **Columns:** article_summary (input), headline (output)
74
+
75
+ # Approximate Statistics
76
+ ```
77
+ article_summary:
78
+ Type: string
79
+ Min length: ~20 tokens
80
+ Mean length: ~50-60 tokens (estimated)
81
+ Max length: ~128 tokens
82
+ headline:
83
+ Type: string
84
+ Min length: ~5 tokens
85
+ Mean length: ~10-15 tokens
86
+ Max length: ~20 tokens
87
+ ```
88
+
89
+ # Training Hyperparameters
90
+ - **per_device_train_batch_size:** 8
91
+ - **per_device_eval_batch_size:** 8
92
+ - **gradient_accumulation_steps:** 2
93
+ - **num_train_epochs:** 4
94
+ - **learning_rate:** 5e-5
95
+ - **fp16:** True
96
+
97
+ This model is optimized for **content topic generation**, ensuring concise, accurate, and informative outputs. 🚀
98
+