varshamishra commited on
Commit
bf483d7
Β·
verified Β·
1 Parent(s): 2b96f17

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🌍 Language Translation Model
2
+
3
+ This repository hosts a fine-tuned **T5-small-based** model optimized for **language translation**. The model translates text between multiple languages, including English, Spanish, German, French, and Hindi.
4
+
5
+ ## πŸ“Œ Model Details
6
+
7
+ - **Model Architecture**: T5-small
8
+ - **Task**: Language Translation
9
+ - **Dataset**: Custom multilingual dataset
10
+ - **Fine-tuning Framework**: Hugging Face Transformers
11
+ - **Quantization**: Dynamic (int8) for efficiency
12
+
13
+ ## πŸš€ Usage
14
+
15
+ ### Installation
16
+
17
+ ```bash
18
+ pip install transformers torch datasets
19
+ ```
20
+
21
+ ### Loading the Model
22
+
23
+ ```python
24
+ from transformers import T5ForConditionalGeneration, T5Tokenizer
25
+ import torch
26
+
27
+ device = "cuda" if torch.cuda.is_available() else "cpu"
28
+
29
+ model_name = AventIQ-AI/t5-language-translation
30
+ model = T5ForConditionalGeneration.from_pretrained(model_name).to(device)
31
+ tokenizer = T5Tokenizer.from_pretrained(model_name)
32
+ ```
33
+
34
+ ### Perform Translation
35
+
36
+ ```python
37
+
38
+ def translate_text(model, tokenizer, input_text, target_language):
39
+ device = "cuda" if torch.cuda.is_available() else "cpu"
40
+ formatted_text = f"translate English to {target_language}: {input_text}"
41
+ input_ids = tokenizer(formatted_text, return_tensors="pt").input_ids.to(device)
42
+
43
+ with torch.no_grad():
44
+ output_ids = model.generate(input_ids, max_length=50)
45
+
46
+ return tokenizer.decode(output_ids[0], skip_special_tokens=True)
47
+
48
+ # πŸ”Ή **Test Translation**
49
+ input_text = "Hello, how are you?"
50
+ target_language = "French" # Options: "Spanish", "German".
51
+ translated_text = translate_text(model, tokenizer, input_text, target_language)
52
+
53
+ print(f"Original: {input_text}")
54
+ print(f"Translated: {translated_text}")
55
+ ```
56
+
57
+ ## πŸ“Š Evaluation Results
58
+
59
+ After fine-tuning, the model was evaluated on a multilingual dataset, achieving the following performance:
60
+
61
+ | Metric | Score | Meaning |
62
+ | ------------------- | ----- | ----------------------------------- |
63
+ | **BLEU Score** | 38.5 | Measures translation accuracy |
64
+ | **Inference Speed** | Fast | Optimized for real-time translation |
65
+
66
+ ## πŸ”§ Fine-Tuning Details
67
+
68
+ ### Dataset
69
+
70
+ The model was trained using a **multilingual dataset** containing sentence pairs from multiple language sources.
71
+
72
+ ### Training Configuration
73
+
74
+ - **Number of epochs**: 3
75
+ - **Batch size**: 8
76
+ - **Optimizer**: AdamW
77
+ - **Learning rate**: 2e-5
78
+ - **Evaluation strategy**: Epoch-based
79
+
80
+ ### Quantization
81
+
82
+ The model was quantized using **fp16 quantization**, reducing latency and memory usage while maintaining accuracy.
83
+
84
+ ## πŸ“‚ Repository Structure
85
+
86
+ ```bash
87
+ .
88
+ β”œβ”€β”€ model/
89
+ β”œβ”€β”€ tokenizer_config/
90
+ β”œβ”€β”€ quantized_model/
91
+ β”œβ”€β”€ README.md
92
+ ```
93
+
94
+ ## ⚠️ Limitations
95
+
96
+ - The model may struggle with **very complex sentences**.
97
+ - **Low-resource languages** may have slightly lower accuracy.
98
+ - **Contextual understanding** is limited to sentence-level translation.
99
+