Upload PPO LunarLander-v2 trained agent
Browse files- Awal-LunarLander-v3.zip +2 -2
- Awal-LunarLander-v3/data +8 -8
- Awal-LunarLander-v3/policy.optimizer.pth +1 -1
- Awal-LunarLander-v3/policy.pth +1 -1
- README.md +2 -1
- config.json +1 -1
- results.json +1 -1
Awal-LunarLander-v3.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aad48337d8a44da8ce3934529b0f147544859768b9ab59d5f7133fcd61aa544b
|
3 |
+
size 143442
|
Awal-LunarLander-v3/data
CHANGED
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,16 +66,16 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
@@ -83,7 +83,7 @@
|
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 64,
|
86 |
-
"n_epochs":
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVgwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVYzpcVXNlcnNcYXdhbFxhbmFjb25kYTNcZW52c1xoZjM3XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 5013504,
|
46 |
+
"_total_timesteps": 5000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1651809574.646809,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPNFj203LA//QYsPlKHor6Fqwu71pOAPQAAAAAAAAAAmtwAPiyz0T7CzlS+EBIvv0oeHD4KjGu+AAAAAAAAAABmQcc9Aa1uPrpYjL4lHgW/3zeFPNoVXr4AAAAAAAAAAAB/ZL2F8MO7fd97PcBACTzVNpk7q15fvQAAgD8AAIA/JvmzPelDELzgWIG78y/LO+jZcj2ujrm8AACAPwAAgD+aQO08POofPX/GkL4lrqS+c+WLvk5qLb4AAAAAAAAAADPHoTxcm1K6Io4+s7fUxS5FaTu7jRzKMwAAgD8AAIA/bXSPPkHocj9z6lO8rOckv1sNAz+Kg1m+AAAAAAAAAAAm8Pg92Re8PtXz3b62nyO/ACpJvTTRoL4AAAAAAAAAAJq+zL02zaI//lsYv+OoGb8IS6m9hzW/vgAAAAAAAAAAbSUgviDThz9SOhe/A9Myv6gARb6mIpy+AAAAAAAAAABmBBm8FCCHutotwTLOpDOvlFzAOaFGpbMAAIA/AACAP1Muab6wzT0/m3QHvbrmK793iP++T1OCPQAAAAAAAAAAM9/fu67luLqCACg1MYt4MOlScznq9Ey0AACAPwAAgD/6UlU+9Jq+PrV+7r4ekiq/G5MRPUPMp74AAAAAAAAAAI3/qL0QAIY+jGIuPReXLb81isG9eiMAPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+rZgqa77ckCUhpRSlIwBbJRLoYwBdJRHQMG+sLq2SdR1fZQoaAZoCWgPQwjBc+/h0ixwQJSGlFKUaBVLpmgWR0DBvrEdBBzFdX2UKGgGaAloD0MIEaj+QWRPckCUhpRSlGgVS7xoFkdAwb650PH1e3V9lChoBmgJaA9DCE/pYP0f9XJAlIaUUpRoFUu0aBZHQMG+wud5IH11fZQoaAZoCWgPQwjXTSmvlSxyQJSGlFKUaBVLu2gWR0DBxTuhVU++dX2UKGgGaAloD0MI+1ksRXLec0CUhpRSlGgVS69oFkdAwcU8ZeAuqXV9lChoBmgJaA9DCCJUqdkDh3BAlIaUUpRoFUuuaBZHQMHFRPkili11fZQoaAZoCWgPQwjXpNsSeWJzQJSGlFKUaBVLumgWR0DBxU4wZflZdX2UKGgGaAloD0MIeVvptVnxcECUhpRSlGgVS7doFkdAwcVVW0Z3tHV9lChoBmgJaA9DCI16iEa37nFAlIaUUpRoFUulaBZHQMHFWTJZGKB1fZQoaAZoCWgPQwjDgvsBTxZxQJSGlFKUaBVLkmgWR0DBxVqbpeNUdX2UKGgGaAloD0MICHb8FwghckCUhpRSlGgVS6loFkdAwcVbwmVqvnV9lChoBmgJaA9DCFA6kWDqdXFAlIaUUpRoFUufaBZHQMHFXpJ5E+h1fZQoaAZoCWgPQwiln3B2azxyQJSGlFKUaBVLs2gWR0DBxWGlwcYJdX2UKGgGaAloD0MIoRFsXL8TcUCUhpRSlGgVS6hoFkdAwcVvmDDjznV9lChoBmgJaA9DCG5Q+60dVXJAlIaUUpRoFUvNaBZHQMHFc7ILgGd1fZQoaAZoCWgPQwiNYU7Q5pFwQJSGlFKUaBVLsmgWR0DBxXivxH5KdX2UKGgGaAloD0MIMSdok8N0c0CUhpRSlGgVS8loFkdAwcWD0nw5N3V9lChoBmgJaA9DCMwHBDqT4nNAlIaUUpRoFUvDaBZHQMHFivxQSBd1fZQoaAZoCWgPQwiQvHMoQ0VxQJSGlFKUaBVLwWgWR0DBxZLMC9ytdX2UKGgGaAloD0MI4h5LH3rQcUCUhpRSlGgVS7JoFkdAwcWaF7laKXV9lChoBmgJaA9DCP+SVKZYmnBAlIaUUpRoFUubaBZHQMHFnOeBg/l1fZQoaAZoCWgPQwiKIM7DSddyQJSGlFKUaBVLuWgWR0DBxZ0qJ/G3dX2UKGgGaAloD0MIexLYnINzb0CUhpRSlGgVS5NoFkdAwcWeT/yXlnV9lChoBmgJaA9DCPBPqRKl83NAlIaUUpRoFUu+aBZHQMHFpyXUpd91fZQoaAZoCWgPQwgUdeYeEkJzQJSGlFKUaBVLpWgWR0DBxazoEB8ydX2UKGgGaAloD0MI2CssuF8qckCUhpRSlGgVS65oFkdAwcWv+XqqwXV9lChoBmgJaA9DCGTPnstUtXJAlIaUUpRoFUumaBZHQMHFtDK5kLB1fZQoaAZoCWgPQwiop4/AX95yQJSGlFKUaBVLumgWR0DBxbS1y/9HdX2UKGgGaAloD0MIzlFHx9UOc0CUhpRSlGgVS7doFkdAwcW4TFERa3V9lChoBmgJaA9DCMeDLXb7P3NAlIaUUpRoFUunaBZHQMHFyZPl+3J1fZQoaAZoCWgPQwgpPdNLjLBwQJSGlFKUaBVLkmgWR0DBxcpYcNpedX2UKGgGaAloD0MIoMa9+c0yckCUhpRSlGgVS45oFkdAwcXOLmZE2HV9lChoBmgJaA9DCKAYWTKHCXNAlIaUUpRoFUvMaBZHQMHF0qpLmIV1fZQoaAZoCWgPQwgh5/1/HNdzQJSGlFKUaBVL02gWR0DBxdn003wTdX2UKGgGaAloD0MIskeoGVJTcUCUhpRSlGgVS5JoFkdAwcXf+OwPiHV9lChoBmgJaA9DCJgW9UmuUXJAlIaUUpRoFUuqaBZHQMHF610DEFZ1fZQoaAZoCWgPQwj5SbVPx8ZwQJSGlFKUaBVLsWgWR0DBxewhnrY5dX2UKGgGaAloD0MIwyy0cxpTckCUhpRSlGgVS7VoFkdAwcXyqIacZ3V9lChoBmgJaA9DCPewFwrYpXNAlIaUUpRoFUvQaBZHQMHF9VinYQJ1fZQoaAZoCWgPQwifrYODPQRyQJSGlFKUaBVLrmgWR0DBxfgqqfe2dX2UKGgGaAloD0MIV9C0xErSb0CUhpRSlGgVS6FoFkdAwcX6+mFajnV9lChoBmgJaA9DCJC7CFMUlHJAlIaUUpRoFUuSaBZHQMHF/EIPbwl1fZQoaAZoCWgPQwgEj2/vWtZwQJSGlFKUaBVLm2gWR0DBxfwiaAnVdX2UKGgGaAloD0MIMQisHJqMcECUhpRSlGgVS6xoFkdAwcX9J04io3V9lChoBmgJaA9DCByastOPTnFAlIaUUpRoFUuNaBZHQMHGFDE3sHB1fZQoaAZoCWgPQwhLrfcb7TNxQJSGlFKUaBVLqWgWR0DBxh3rfLs9dX2UKGgGaAloD0MIiGUzh6SEckCUhpRSlGgVS+ZoFkdAwcYfthuwYHV9lChoBmgJaA9DCMu/lldue3BAlIaUUpRoFUvDaBZHQMHGJqA8Swp1fZQoaAZoCWgPQwjDt7BuPMdzQJSGlFKUaBVLx2gWR0DBxigIIF/ydX2UKGgGaAloD0MIpItNK4VOcUCUhpRSlGgVS59oFkdAwcYsY0EX+HV9lChoBmgJaA9DCO26tyIxFHBAlIaUUpRoFUudaBZHQMHGOZEDyOJ1fZQoaAZoCWgPQwiQEOULmt5yQJSGlFKUaBVLzmgWR0DBxj6vkiljdX2UKGgGaAloD0MIgpGXNTHXcECUhpRSlGgVS59oFkdAwcZDKkl/pnV9lChoBmgJaA9DCDDUYYVbSnNAlIaUUpRoFUulaBZHQMHGQypR4yJ1fZQoaAZoCWgPQwhYrOEi91xxQJSGlFKUaBVLm2gWR0DBxkkuUUwjdX2UKGgGaAloD0MIIlFoWfcLcUCUhpRSlGgVS6FoFkdAwcZJsWweNnV9lChoBmgJaA9DCF5nQ/6ZA3NAlIaUUpRoFUuhaBZHQMHGSxnOB191fZQoaAZoCWgPQwiQFJFhlfRyQJSGlFKUaBVLxGgWR0DBxksZ3s5XdX2UKGgGaAloD0MIn1VmSuuLckCUhpRSlGgVS7JoFkdAwcZOC17Y03V9lChoBmgJaA9DCPnX8sr1iXNAlIaUUpRoFUu7aBZHQMHGVXfhuO11fZQoaAZoCWgPQwg+PEuQUS1yQJSGlFKUaBVLfmgWR0DBxmQQSSNgdX2UKGgGaAloD0MIoOHNGjw0ckCUhpRSlGgVS7ZoFkdAwcZsQEpy63V9lChoBmgJaA9DCGr3qwAfUnFAlIaUUpRoFUumaBZHQMHGbYfnwG51fZQoaAZoCWgPQwhAEvbtJPRuQJSGlFKUaBVLo2gWR0DBxm3KfWc0dX2UKGgGaAloD0MIFJfjFYibcECUhpRSlGgVS51oFkdAwcZ2XdCVr3V9lChoBmgJaA9DCP334LXLAnJAlIaUUpRoFUutaBZHQMHGeIrFwUB1fZQoaAZoCWgPQwiD9urjoV5yQJSGlFKUaBVLnGgWR0DBxoA3o9s8dX2UKGgGaAloD0MI3Lkw0kuacECUhpRSlGgVS5loFkdAwcaDaufVZ3V9lChoBmgJaA9DCP/PYb78THBAlIaUUpRoFUulaBZHQMHGjWaDwph1fZQoaAZoCWgPQwh7wDxkSm9zQJSGlFKUaBVLp2gWR0DBxo4rH2h7dX2UKGgGaAloD0MIBDxp4fL8cUCUhpRSlGgVS5ZoFkdAwcaRn8sMAnV9lChoBmgJaA9DCIohOZm4snNAlIaUUpRoFUuxaBZHQMHGmGhdt2t1fZQoaAZoCWgPQwgkYkokkThxQJSGlFKUaBVLrWgWR0DBxphoduHfdX2UKGgGaAloD0MIiLt6FdkTckCUhpRSlGgVS7doFkdAwcabm7rcCnV9lChoBmgJaA9DCBh5WRMLhk9AlIaUUpRoFUtvaBZHQMHGns6q8151fZQoaAZoCWgPQwh5rBkZpC5zQJSGlFKUaBVLxmgWR0DBxqMp3HJcdX2UKGgGaAloD0MIiLzl6ge7cUCUhpRSlGgVS7RoFkdAwcamOyVv/HV9lChoBmgJaA9DCDLLngQ2hHNAlIaUUpRoFUunaBZHQMHGrcmKIi11fZQoaAZoCWgPQwgTukvirIxwQJSGlFKUaBVLoGgWR0DBxr4raufVdX2UKGgGaAloD0MI9Ix9yUZHdECUhpRSlGgVS7toFkdAwcbA25QP7XV9lChoBmgJaA9DCHbdW5HYQHNAlIaUUpRoFUvEaBZHQMHGxr8R+Sd1fZQoaAZoCWgPQwgAN4sXix9yQJSGlFKUaBVLvmgWR0DBxs7O/tY0dX2UKGgGaAloD0MIVyWRfVAFcUCUhpRSlGgVS4loFkdAwcbQVymygXV9lChoBmgJaA9DCHXpX5JKfHFAlIaUUpRoFUuwaBZHQMHG1A57w8Z1fZQoaAZoCWgPQwgDtoMR+8tyQJSGlFKUaBVLvWgWR0DBxta+nIhhdX2UKGgGaAloD0MIacTMPg85cECUhpRSlGgVS6FoFkdAwcbYJv5xi3V9lChoBmgJaA9DCBZRE33+mHFAlIaUUpRoFUuzaBZHQMHG31HWjGl1fZQoaAZoCWgPQwjXhR+cD69wQJSGlFKUaBVLtGgWR0DBxuvc+JP7dX2UKGgGaAloD0MIylGAKBjnckCUhpRSlGgVS6ZoFkdAwcbsf6oES3V9lChoBmgJaA9DCEQV/gxvvkJAlIaUUpRoFUtiaBZHQMHG75M10kp1fZQoaAZoCWgPQwg3b5wUZo9xQJSGlFKUaBVLjmgWR0DBxvKlenhsdX2UKGgGaAloD0MIa2PshBfOc0CUhpRSlGgVS8doFkdAwcb57/n4f3V9lChoBmgJaA9DCCAldm0v3nNAlIaUUpRoFUvVaBZHQMHG/adDpkh1fZQoaAZoCWgPQwiASpUoe5pzQJSGlFKUaBVLwmgWR0DBxwC4e9zwdX2UKGgGaAloD0MI5DEDlbEjc0CUhpRSlGgVS8VoFkdAwccFt52Qn3V9lChoBmgJaA9DCOBoxw2/lXJAlIaUUpRoFUugaBZHQMHHC1loUSJ1fZQoaAZoCWgPQwhtcY3PZB9yQJSGlFKUaBVLr2gWR0DBxxoyM1jzdX2UKGgGaAloD0MIs+4fC5FBcECUhpRSlGgVS6FoFkdAwccb3C9AX3V9lChoBmgJaA9DCM76lGOyInJAlIaUUpRoFUuiaBZHQMHHHggow251ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 3060,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
|
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVgwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVYzpcVXNlcnNcYXdhbFxhbmFjb25kYTNcZW52c1xoZjM3XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
Awal-LunarLander-v3/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84637
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc72c3686f7bed0584baa1465a0b09100101be21b142129ab9f4c0c3db0754eb
|
3 |
size 84637
|
Awal-LunarLander-v3/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43073
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8a208c0d57d8f3698c945275ea6b9ea69e6633f0efd62a10cd3386d2eb70f9b
|
3 |
size 43073
|
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
@@ -20,6 +20,7 @@ model-index:
|
|
20 |
type: LunarLander-v2
|
21 |
---
|
22 |
|
|
|
23 |
# **PPO** Agent playing **LunarLander-v2**
|
24 |
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 286.01 +/- 23.09
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
20 |
type: LunarLander-v2
|
21 |
---
|
22 |
|
23 |
+
|
24 |
# **PPO** Agent playing **LunarLander-v2**
|
25 |
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000001D005D5B828>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001D005D5B8B8>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001D005D5B948>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001D005D5B9D8>", "_build": "<function ActorCriticPolicy._build at 0x000001D005D5BA68>", "forward": "<function ActorCriticPolicy.forward at 0x000001D005D5BAF8>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001D005D5BB88>", "_predict": "<function ActorCriticPolicy._predict at 0x000001D005D5BC18>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001D005D5BCA8>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001D005D5BD38>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001D005D5BDC8>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x000001D005D44690>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651806437.1190724, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVgwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVYzpcVXNlcnNcYXdhbFxhbmFjb25kYTNcZW52c1xoZjM3XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADAlDnhQUA/iqf1vAus675y8J87MeSIuQAAAAAAAAAAszCHvdfOuD/39w6/E1w0OcgNorz6QEi+AAAAAAAAAADN/Ne7jpSNvAaFRz298gG+x3zrvS97Eb8AAIA/AACAPwCejbzhiIO8RViAPcmWIz07MvC94Hf/PQAAgD8AAIA/MxUyvVr7oT/e/bq+2kchv7PlL70C/jm+AAAAAAAAAAAaC069nOI8PcozfT61zTm+xim8PVZ6DL0AAAAAAAAAADNPVTwKiwS7w/Q1vD8b6TxMJwA82tDFvQAAgD8AAIA/mm7evJ+LtT+gHVO+UTbzvTblNbyJIsO9AAAAAAAAAADtBCG+yI+DP/2Sab72Sge/7IB6vqmHvr0AAAAAAAAAAEKKqr5ImFA/uwD+PdVB5763AZu+Ug+BPgAAAAAAAAAA5jSkvctqyz3iteE9W4dbvklxi72qv4E9AAAAAAAAAAAmMI29PhyrP/auI79wh+W+5uYUvGBbXL4AAAAAAAAAAM36tjwfhf+58t6WumbjNLU4twS7VZeyOQAAgD8AAIA/tS2JvmgQGT+eU+G8wtztviSuh76NvvE9AAAAAAAAAABAWzI+SK+HPz1nkT631Pu+SXzwPkpKOj4AAAAAAAAAAABeK7yydac/1qg0veIQDL/Ycoy8dWcGPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdPBMaJKhcUCUhpRSlIwBbJRL8owBdJRHQJ9mozBRAKR1fZQoaAZoCWgPQwiCHf8FgipyQJSGlFKUaBVL12gWR0CfZ4V94NZvdX2UKGgGaAloD0MIXCGsxhJHcUCUhpRSlGgVS9poFkdAn2gPu5SWJXV9lChoBmgJaA9DCJ7Swfq/3HBAlIaUUpRoFUu/aBZHQJ9oKlvZRKp1fZQoaAZoCWgPQwiZKELqtqFzQJSGlFKUaBVL4WgWR0CfaEoakyk9dX2UKGgGaAloD0MIctwpHSwvcECUhpRSlGgVS+FoFkdAn2h6OtGNJnV9lChoBmgJaA9DCF9CBYeX3XJAlIaUUpRoFUvFaBZHQJ9ornSv1UV1fZQoaAZoCWgPQwjVJk7u90NxQJSGlFKUaBVLzmgWR0CfaVBHkLhKdX2UKGgGaAloD0MIRtPZyaBMcUCUhpRSlGgVS+ZoFkdAn2l/WMCLdnV9lChoBmgJaA9DCPsCeuHO03JAlIaUUpRoFUv7aBZHQJ9pmPJaJRB1fZQoaAZoCWgPQwhhVFInIKFwQJSGlFKUaBVLzmgWR0Cfaa1uivgWdX2UKGgGaAloD0MIoIuGjMceb0CUhpRSlGgVS+ZoFkdAn2qFfeDWb3V9lChoBmgJaA9DCJLM6h3uz3JAlIaUUpRoFUv3aBZHQJ9qnhxYJVt1fZQoaAZoCWgPQwgF/YUeMaZvQJSGlFKUaBVL7GgWR0CfatqEOAiFdX2UKGgGaAloD0MIfnA+dSxSckCUhpRSlGgVS+FoFkdAn2sBbjcVQHV9lChoBmgJaA9DCCRE+YKWFW1AlIaUUpRoFUvqaBZHQJ9rCqXF98Z1fZQoaAZoCWgPQwhhGRu62W5wQJSGlFKUaBVL+2gWR0CfayZKnNxEdX2UKGgGaAloD0MIYKsEi8NpTkCUhpRSlGgVS89oFkdAn2t9Vmz0H3V9lChoBmgJaA9DCJ5DGapiC1NAlIaUUpRoFUuXaBZHQJ9rleAuqWF1fZQoaAZoCWgPQwgRct7/h7BwQJSGlFKUaBVL02gWR0CfbCQ3PzFudX2UKGgGaAloD0MIr7Mh/ww0ckCUhpRSlGgVS8toFkdAn2xUWAPNFHV9lChoBmgJaA9DCL9+iA0WQHNAlIaUUpRoFU0LAWgWR0CfbR8XenAJdX2UKGgGaAloD0MIxGD+ClkackCUhpRSlGgVTQ8BaBZHQJ9tbPOY6XB1fZQoaAZoCWgPQwg8g4b+iX1uQJSGlFKUaBVL2GgWR0CfbbSX+l0pdX2UKGgGaAloD0MIOUNxxxt8cUCUhpRSlGgVS+xoFkdAn4GeEdvKl3V9lChoBmgJaA9DCIMZU7CGMnJAlIaUUpRoFUv9aBZHQJ+B3pTuOS51fZQoaAZoCWgPQwgo8iTpmmBuQJSGlFKUaBVL9WgWR0CfgiQ2MsH0dX2UKGgGaAloD0MIyeTUzvC3cUCUhpRSlGgVS+loFkdAn4LD/IbOvHV9lChoBmgJaA9DCOUK73KRnnJAlIaUUpRoFUvSaBZHQJ+C01ivxH51fZQoaAZoCWgPQwip9X6j3TNyQJSGlFKUaBVL62gWR0CfguO6/ZdwdX2UKGgGaAloD0MI76tyoXK6bUCUhpRSlGgVS9VoFkdAn4MDeGfwqnV9lChoBmgJaA9DCB8r+G2II3JAlIaUUpRoFUvyaBZHQJ+DQfDDTBt1fZQoaAZoCWgPQwjJPV3dcRR0QJSGlFKUaBVL8mgWR0Cfg2jbBXS0dX2UKGgGaAloD0MI5zQLtPs/cECUhpRSlGgVS95oFkdAn4OLo0Q9R3V9lChoBmgJaA9DCNmZQuc1K29AlIaUUpRoFUviaBZHQJ+DtaePJaJ1fZQoaAZoCWgPQwgjTifZKhlwQJSGlFKUaBVL4mgWR0CfhDOSGJvYdX2UKGgGaAloD0MIVDvD1Fa4ckCUhpRSlGgVS89oFkdAn4TA4sEq2HV9lChoBmgJaA9DCA3hmGVPCnBAlIaUUpRoFUvLaBZHQJ+E+C9RJmN1fZQoaAZoCWgPQwh+/KVFPcxxQJSGlFKUaBVLx2gWR0CfhSplSS/1dX2UKGgGaAloD0MIDB8RUyLZQUCUhpRSlGgVS5FoFkdAn4VZd4Vym3V9lChoBmgJaA9DCA8PYfw0fXJAlIaUUpRoFUvfaBZHQJ+F/lOoHcF1fZQoaAZoCWgPQwgkRWRYhYxyQJSGlFKUaBVNOQFoFkdAn4YQymALA3V9lChoBmgJaA9DCGTOM/blnXFAlIaUUpRoFUvSaBZHQJ+GFOO801t1fZQoaAZoCWgPQwjcD3hgQERwQJSGlFKUaBVL6WgWR0CfhlRXfZVXdX2UKGgGaAloD0MIzM8NTdmNcECUhpRSlGgVS8xoFkdAn4aOvllsg3V9lChoBmgJaA9DCKpkAKjijnJAlIaUUpRoFUvQaBZHQJ+Gs5Ke05V1fZQoaAZoCWgPQwjtKM5RR4ZwQJSGlFKUaBVLymgWR0CfhuvlEJBxdX2UKGgGaAloD0MIbvyJyoZZMkCUhpRSlGgVS7loFkdAn4br5M10knV9lChoBmgJaA9DCFotsMfEnXBAlIaUUpRoFUvQaBZHQJ+HJ0lqrR11fZQoaAZoCWgPQwhuaMpO/5NwQJSGlFKUaBVL+mgWR0Cfh3tJWeYldX2UKGgGaAloD0MIUfpCyLl5cECUhpRSlGgVS+FoFkdAn4e3tShrWXV9lChoBmgJaA9DCD9SRIZV91FAlIaUUpRoFUt8aBZHQJ+IKmUGFBZ1fZQoaAZoCWgPQwgpPdNLjCtwQJSGlFKUaBVLy2gWR0CfiGfUnXumdX2UKGgGaAloD0MIknajjzkJc0CUhpRSlGgVS/NoFkdAn4iLo0Q9R3V9lChoBmgJaA9DCGzu6H95wHBAlIaUUpRoFUvWaBZHQJ+I3IhhYvF1fZQoaAZoCWgPQwj6JeKts4ZxQJSGlFKUaBVL3GgWR0CfiT3PzFuOdX2UKGgGaAloD0MI8gpET8q+b0CUhpRSlGgVS9NoFkdAn4n7QLNOd3V9lChoBmgJaA9DCImyt5SzJnFAlIaUUpRoFUv2aBZHQJ+KBX4j8k51fZQoaAZoCWgPQwh81F+vsKtuQJSGlFKUaBVL5WgWR0CfilFEy+HrdX2UKGgGaAloD0MIsB2M2Cc0cECUhpRSlGgVS+BoFkdAn4qfF3pwCXV9lChoBmgJaA9DCC0Kuyg6u3BAlIaUUpRoFUvXaBZHQJ+K3Y5DJEJ1fZQoaAZoCWgPQwjBGmfT0ZZxQJSGlFKUaBVL42gWR0CfivgvDgqFdX2UKGgGaAloD0MIG0rtRXRmckCUhpRSlGgVS+VoFkdAn4upVbRne3V9lChoBmgJaA9DCBDrjVqhZnJAlIaUUpRoFU0FAWgWR0Cfi/5cC5mRdX2UKGgGaAloD0MIixh2GNOMcECUhpRSlGgVS9poFkdAn4whLK3d9HV9lChoBmgJaA9DCP/r3LQZ8W9AlIaUUpRoFU0BAWgWR0CfjJj7ALy+dX2UKGgGaAloD0MI7GexFMmcUUCUhpRSlGgVS9doFkdAn4yY+wC8vnV9lChoBmgJaA9DCBlZMseyrHJAlIaUUpRoFU0nAWgWR0CfjKdRzijtdX2UKGgGaAloD0MIQ6ooXiVLc0CUhpRSlGgVS9hoFkdAn41KGgzxgHV9lChoBmgJaA9DCG3jT1T23nFAlIaUUpRoFUv2aBZHQJ+Nb/0dzXB1fZQoaAZoCWgPQwiTV+cYULVxQJSGlFKUaBVL/mgWR0CfjcYAsCkodX2UKGgGaAloD0MIf93pzhPsbkCUhpRSlGgVS/1oFkdAn45q55JK8XV9lChoBmgJaA9DCDelvFaCUXFAlIaUUpRoFUvbaBZHQJ+Ocw+MZP51fZQoaAZoCWgPQwhVhQZi2UxzQJSGlFKUaBVL3mgWR0CfjoaNdZ7pdX2UKGgGaAloD0MIRPrt64B+ckCUhpRSlGgVS+xoFkdAn48sZxaPjnV9lChoBmgJaA9DCFH3AUhtBHBAlIaUUpRoFUvaaBZHQJ+PbfEXLvF1fZQoaAZoCWgPQwiASpUou3hxQJSGlFKUaBVNAgFoFkdAn4/goPTXrnV9lChoBmgJaA9DCM/abReaDXJAlIaUUpRoFUv5aBZHQJ+P7OryUcJ1fZQoaAZoCWgPQwgfZi/bjp1wQJSGlFKUaBVL0WgWR0Cfj+/9YOlPdX2UKGgGaAloD0MIF9f4TDaxcUCUhpRSlGgVS85oFkdAn5BSSvC/GnV9lChoBmgJaA9DCLyUumScbm1AlIaUUpRoFUvWaBZHQJ+QVV3ljmV1fZQoaAZoCWgPQwjZQpCDEixuQJSGlFKUaBVLy2gWR0CfkK12aDwpdX2UKGgGaAloD0MIrTWU2ovJcECUhpRSlGgVS8toFkdAn5Ctdmg8KXV9lChoBmgJaA9DCEBqEye33XFAlIaUUpRoFUvbaBZHQJ+Q+C4Bmwt1fZQoaAZoCWgPQwiOd0fGKqhxQJSGlFKUaBVL0GgWR0CfkXk1Mue0dX2UKGgGaAloD0MIXB5rRkaCcUCUhpRSlGgVS9RoFkdAn5IDewcHW3V9lChoBmgJaA9DCG8vaYwWinJAlIaUUpRoFUu6aBZHQJ+SJUJfICF1fZQoaAZoCWgPQwjzjeie9RFxQJSGlFKUaBVL62gWR0CfkilVcUuddX2UKGgGaAloD0MIuyu7YHAUcUCUhpRSlGgVS9JoFkdAn5KLpFCswXV9lChoBmgJaA9DCL+CNGPRFnJAlIaUUpRoFUvYaBZHQJ+SwelsP8R1fZQoaAZoCWgPQwiYhXZOs+dwQJSGlFKUaBVL+WgWR0CflEoaUA1fdX2UKGgGaAloD0MI+PnvwWuNbkCUhpRSlGgVS+BoFkdAn5SFfeDWb3V9lChoBmgJaA9DCCdO7nfo6HJAlIaUUpRoFUvmaBZHQJ+UtZ3cHnl1fZQoaAZoCWgPQwiut81USGtyQJSGlFKUaBVL82gWR0CflP5S3soldX2UKGgGaAloD0MISnoYWl3jc0CUhpRSlGgVTRIBaBZHQJ+VEs6JZW91fZQoaAZoCWgPQwizfjMxXbFyQJSGlFKUaBVL6WgWR0CflT7WNFSbdX2UKGgGaAloD0MIG76FdaMMc0CUhpRSlGgVS9VoFkdAn5WscQyylnV9lChoBmgJaA9DCKt14nJ8wnBAlIaUUpRoFUvpaBZHQJ+Vsox59mZ1fZQoaAZoCWgPQwih9IWQcxxyQJSGlFKUaBVL6WgWR0CflbOcDr7gdX2UKGgGaAloD0MItoZSe5EGckCUhpRSlGgVS/9oFkdAn5W4sRQJonVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 616, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVgwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVYzpcVXNlcnNcYXdhbFxhbmFjb25kYTNcZW52c1xoZjM3XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.22000-SP0 10.0.22000", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000001D005D5B828>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001D005D5B8B8>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001D005D5B948>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001D005D5B9D8>", "_build": "<function ActorCriticPolicy._build at 0x000001D005D5BA68>", "forward": "<function ActorCriticPolicy.forward at 0x000001D005D5BAF8>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001D005D5BB88>", "_predict": "<function ActorCriticPolicy._predict at 0x000001D005D5BC18>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001D005D5BCA8>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001D005D5BD38>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001D005D5BDC8>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x000001D005D44690>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651809574.646809, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVgwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVYzpcVXNlcnNcYXdhbFxhbmFjb25kYTNcZW52c1xoZjM3XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPNFj203LA//QYsPlKHor6Fqwu71pOAPQAAAAAAAAAAmtwAPiyz0T7CzlS+EBIvv0oeHD4KjGu+AAAAAAAAAABmQcc9Aa1uPrpYjL4lHgW/3zeFPNoVXr4AAAAAAAAAAAB/ZL2F8MO7fd97PcBACTzVNpk7q15fvQAAgD8AAIA/JvmzPelDELzgWIG78y/LO+jZcj2ujrm8AACAPwAAgD+aQO08POofPX/GkL4lrqS+c+WLvk5qLb4AAAAAAAAAADPHoTxcm1K6Io4+s7fUxS5FaTu7jRzKMwAAgD8AAIA/bXSPPkHocj9z6lO8rOckv1sNAz+Kg1m+AAAAAAAAAAAm8Pg92Re8PtXz3b62nyO/ACpJvTTRoL4AAAAAAAAAAJq+zL02zaI//lsYv+OoGb8IS6m9hzW/vgAAAAAAAAAAbSUgviDThz9SOhe/A9Myv6gARb6mIpy+AAAAAAAAAABmBBm8FCCHutotwTLOpDOvlFzAOaFGpbMAAIA/AACAP1Muab6wzT0/m3QHvbrmK793iP++T1OCPQAAAAAAAAAAM9/fu67luLqCACg1MYt4MOlScznq9Ey0AACAPwAAgD/6UlU+9Jq+PrV+7r4ekiq/G5MRPUPMp74AAAAAAAAAAI3/qL0QAIY+jGIuPReXLb81isG9eiMAPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+rZgqa77ckCUhpRSlIwBbJRLoYwBdJRHQMG+sLq2SdR1fZQoaAZoCWgPQwjBc+/h0ixwQJSGlFKUaBVLpmgWR0DBvrEdBBzFdX2UKGgGaAloD0MIEaj+QWRPckCUhpRSlGgVS7xoFkdAwb650PH1e3V9lChoBmgJaA9DCE/pYP0f9XJAlIaUUpRoFUu0aBZHQMG+wud5IH11fZQoaAZoCWgPQwjXTSmvlSxyQJSGlFKUaBVLu2gWR0DBxTuhVU++dX2UKGgGaAloD0MI+1ksRXLec0CUhpRSlGgVS69oFkdAwcU8ZeAuqXV9lChoBmgJaA9DCCJUqdkDh3BAlIaUUpRoFUuuaBZHQMHFRPkili11fZQoaAZoCWgPQwjXpNsSeWJzQJSGlFKUaBVLumgWR0DBxU4wZflZdX2UKGgGaAloD0MIeVvptVnxcECUhpRSlGgVS7doFkdAwcVVW0Z3tHV9lChoBmgJaA9DCI16iEa37nFAlIaUUpRoFUulaBZHQMHFWTJZGKB1fZQoaAZoCWgPQwjDgvsBTxZxQJSGlFKUaBVLkmgWR0DBxVqbpeNUdX2UKGgGaAloD0MICHb8FwghckCUhpRSlGgVS6loFkdAwcVbwmVqvnV9lChoBmgJaA9DCFA6kWDqdXFAlIaUUpRoFUufaBZHQMHFXpJ5E+h1fZQoaAZoCWgPQwiln3B2azxyQJSGlFKUaBVLs2gWR0DBxWGlwcYJdX2UKGgGaAloD0MIoRFsXL8TcUCUhpRSlGgVS6hoFkdAwcVvmDDjznV9lChoBmgJaA9DCG5Q+60dVXJAlIaUUpRoFUvNaBZHQMHFc7ILgGd1fZQoaAZoCWgPQwiNYU7Q5pFwQJSGlFKUaBVLsmgWR0DBxXivxH5KdX2UKGgGaAloD0MIMSdok8N0c0CUhpRSlGgVS8loFkdAwcWD0nw5N3V9lChoBmgJaA9DCMwHBDqT4nNAlIaUUpRoFUvDaBZHQMHFivxQSBd1fZQoaAZoCWgPQwiQvHMoQ0VxQJSGlFKUaBVLwWgWR0DBxZLMC9ytdX2UKGgGaAloD0MI4h5LH3rQcUCUhpRSlGgVS7JoFkdAwcWaF7laKXV9lChoBmgJaA9DCP+SVKZYmnBAlIaUUpRoFUubaBZHQMHFnOeBg/l1fZQoaAZoCWgPQwiKIM7DSddyQJSGlFKUaBVLuWgWR0DBxZ0qJ/G3dX2UKGgGaAloD0MIexLYnINzb0CUhpRSlGgVS5NoFkdAwcWeT/yXlnV9lChoBmgJaA9DCPBPqRKl83NAlIaUUpRoFUu+aBZHQMHFpyXUpd91fZQoaAZoCWgPQwgUdeYeEkJzQJSGlFKUaBVLpWgWR0DBxazoEB8ydX2UKGgGaAloD0MI2CssuF8qckCUhpRSlGgVS65oFkdAwcWv+XqqwXV9lChoBmgJaA9DCGTPnstUtXJAlIaUUpRoFUumaBZHQMHFtDK5kLB1fZQoaAZoCWgPQwiop4/AX95yQJSGlFKUaBVLumgWR0DBxbS1y/9HdX2UKGgGaAloD0MIzlFHx9UOc0CUhpRSlGgVS7doFkdAwcW4TFERa3V9lChoBmgJaA9DCMeDLXb7P3NAlIaUUpRoFUunaBZHQMHFyZPl+3J1fZQoaAZoCWgPQwgpPdNLjLBwQJSGlFKUaBVLkmgWR0DBxcpYcNpedX2UKGgGaAloD0MIoMa9+c0yckCUhpRSlGgVS45oFkdAwcXOLmZE2HV9lChoBmgJaA9DCKAYWTKHCXNAlIaUUpRoFUvMaBZHQMHF0qpLmIV1fZQoaAZoCWgPQwgh5/1/HNdzQJSGlFKUaBVL02gWR0DBxdn003wTdX2UKGgGaAloD0MIskeoGVJTcUCUhpRSlGgVS5JoFkdAwcXf+OwPiHV9lChoBmgJaA9DCJgW9UmuUXJAlIaUUpRoFUuqaBZHQMHF610DEFZ1fZQoaAZoCWgPQwj5SbVPx8ZwQJSGlFKUaBVLsWgWR0DBxewhnrY5dX2UKGgGaAloD0MIwyy0cxpTckCUhpRSlGgVS7VoFkdAwcXyqIacZ3V9lChoBmgJaA9DCPewFwrYpXNAlIaUUpRoFUvQaBZHQMHF9VinYQJ1fZQoaAZoCWgPQwifrYODPQRyQJSGlFKUaBVLrmgWR0DBxfgqqfe2dX2UKGgGaAloD0MIV9C0xErSb0CUhpRSlGgVS6FoFkdAwcX6+mFajnV9lChoBmgJaA9DCJC7CFMUlHJAlIaUUpRoFUuSaBZHQMHF/EIPbwl1fZQoaAZoCWgPQwgEj2/vWtZwQJSGlFKUaBVLm2gWR0DBxfwiaAnVdX2UKGgGaAloD0MIMQisHJqMcECUhpRSlGgVS6xoFkdAwcX9J04io3V9lChoBmgJaA9DCByastOPTnFAlIaUUpRoFUuNaBZHQMHGFDE3sHB1fZQoaAZoCWgPQwhLrfcb7TNxQJSGlFKUaBVLqWgWR0DBxh3rfLs9dX2UKGgGaAloD0MIiGUzh6SEckCUhpRSlGgVS+ZoFkdAwcYfthuwYHV9lChoBmgJaA9DCMu/lldue3BAlIaUUpRoFUvDaBZHQMHGJqA8Swp1fZQoaAZoCWgPQwjDt7BuPMdzQJSGlFKUaBVLx2gWR0DBxigIIF/ydX2UKGgGaAloD0MIpItNK4VOcUCUhpRSlGgVS59oFkdAwcYsY0EX+HV9lChoBmgJaA9DCO26tyIxFHBAlIaUUpRoFUudaBZHQMHGOZEDyOJ1fZQoaAZoCWgPQwiQEOULmt5yQJSGlFKUaBVLzmgWR0DBxj6vkiljdX2UKGgGaAloD0MIgpGXNTHXcECUhpRSlGgVS59oFkdAwcZDKkl/pnV9lChoBmgJaA9DCDDUYYVbSnNAlIaUUpRoFUulaBZHQMHGQypR4yJ1fZQoaAZoCWgPQwhYrOEi91xxQJSGlFKUaBVLm2gWR0DBxkkuUUwjdX2UKGgGaAloD0MIIlFoWfcLcUCUhpRSlGgVS6FoFkdAwcZJsWweNnV9lChoBmgJaA9DCF5nQ/6ZA3NAlIaUUpRoFUuhaBZHQMHGSxnOB191fZQoaAZoCWgPQwiQFJFhlfRyQJSGlFKUaBVLxGgWR0DBxksZ3s5XdX2UKGgGaAloD0MIn1VmSuuLckCUhpRSlGgVS7JoFkdAwcZOC17Y03V9lChoBmgJaA9DCPnX8sr1iXNAlIaUUpRoFUu7aBZHQMHGVXfhuO11fZQoaAZoCWgPQwg+PEuQUS1yQJSGlFKUaBVLfmgWR0DBxmQQSSNgdX2UKGgGaAloD0MIoOHNGjw0ckCUhpRSlGgVS7ZoFkdAwcZsQEpy63V9lChoBmgJaA9DCGr3qwAfUnFAlIaUUpRoFUumaBZHQMHGbYfnwG51fZQoaAZoCWgPQwhAEvbtJPRuQJSGlFKUaBVLo2gWR0DBxm3KfWc0dX2UKGgGaAloD0MIFJfjFYibcECUhpRSlGgVS51oFkdAwcZ2XdCVr3V9lChoBmgJaA9DCP334LXLAnJAlIaUUpRoFUutaBZHQMHGeIrFwUB1fZQoaAZoCWgPQwiD9urjoV5yQJSGlFKUaBVLnGgWR0DBxoA3o9s8dX2UKGgGaAloD0MI3Lkw0kuacECUhpRSlGgVS5loFkdAwcaDaufVZ3V9lChoBmgJaA9DCP/PYb78THBAlIaUUpRoFUulaBZHQMHGjWaDwph1fZQoaAZoCWgPQwh7wDxkSm9zQJSGlFKUaBVLp2gWR0DBxo4rH2h7dX2UKGgGaAloD0MIBDxp4fL8cUCUhpRSlGgVS5ZoFkdAwcaRn8sMAnV9lChoBmgJaA9DCIohOZm4snNAlIaUUpRoFUuxaBZHQMHGmGhdt2t1fZQoaAZoCWgPQwgkYkokkThxQJSGlFKUaBVLrWgWR0DBxphoduHfdX2UKGgGaAloD0MIiLt6FdkTckCUhpRSlGgVS7doFkdAwcabm7rcCnV9lChoBmgJaA9DCBh5WRMLhk9AlIaUUpRoFUtvaBZHQMHGns6q8151fZQoaAZoCWgPQwh5rBkZpC5zQJSGlFKUaBVLxmgWR0DBxqMp3HJcdX2UKGgGaAloD0MIiLzl6ge7cUCUhpRSlGgVS7RoFkdAwcamOyVv/HV9lChoBmgJaA9DCDLLngQ2hHNAlIaUUpRoFUunaBZHQMHGrcmKIi11fZQoaAZoCWgPQwgTukvirIxwQJSGlFKUaBVLoGgWR0DBxr4raufVdX2UKGgGaAloD0MI9Ix9yUZHdECUhpRSlGgVS7toFkdAwcbA25QP7XV9lChoBmgJaA9DCHbdW5HYQHNAlIaUUpRoFUvEaBZHQMHGxr8R+Sd1fZQoaAZoCWgPQwgAN4sXix9yQJSGlFKUaBVLvmgWR0DBxs7O/tY0dX2UKGgGaAloD0MIVyWRfVAFcUCUhpRSlGgVS4loFkdAwcbQVymygXV9lChoBmgJaA9DCHXpX5JKfHFAlIaUUpRoFUuwaBZHQMHG1A57w8Z1fZQoaAZoCWgPQwgDtoMR+8tyQJSGlFKUaBVLvWgWR0DBxta+nIhhdX2UKGgGaAloD0MIacTMPg85cECUhpRSlGgVS6FoFkdAwcbYJv5xi3V9lChoBmgJaA9DCBZRE33+mHFAlIaUUpRoFUuzaBZHQMHG31HWjGl1fZQoaAZoCWgPQwjXhR+cD69wQJSGlFKUaBVLtGgWR0DBxuvc+JP7dX2UKGgGaAloD0MIylGAKBjnckCUhpRSlGgVS6ZoFkdAwcbsf6oES3V9lChoBmgJaA9DCEQV/gxvvkJAlIaUUpRoFUtiaBZHQMHG75M10kp1fZQoaAZoCWgPQwg3b5wUZo9xQJSGlFKUaBVLjmgWR0DBxvKlenhsdX2UKGgGaAloD0MIa2PshBfOc0CUhpRSlGgVS8doFkdAwcb57/n4f3V9lChoBmgJaA9DCCAldm0v3nNAlIaUUpRoFUvVaBZHQMHG/adDpkh1fZQoaAZoCWgPQwiASpUoe5pzQJSGlFKUaBVLwmgWR0DBxwC4e9zwdX2UKGgGaAloD0MI5DEDlbEjc0CUhpRSlGgVS8VoFkdAwccFt52Qn3V9lChoBmgJaA9DCOBoxw2/lXJAlIaUUpRoFUugaBZHQMHHC1loUSJ1fZQoaAZoCWgPQwhtcY3PZB9yQJSGlFKUaBVLr2gWR0DBxxoyM1jzdX2UKGgGaAloD0MIs+4fC5FBcECUhpRSlGgVS6FoFkdAwccb3C9AX3V9lChoBmgJaA9DCM76lGOyInJAlIaUUpRoFUuiaBZHQMHHHggow251ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3060, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVgwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVYzpcVXNlcnNcYXdhbFxhbmFjb25kYTNcZW52c1xoZjM3XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.22000-SP0 10.0.22000", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 286.0105556207178, "std_reward": 23.086851479757517, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T20:16:40.602762"}
|