File size: 5,690 Bytes
da80e9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import datasets
import os


_DESCRIPTION = "MGB2 speech recognition dataset AR"
_HOMEPAGE = "https://arabicspeech.org/mgb2/"
_LICENSE = "MGB-2 License agreement"
_CITATION = """@misc{https://doi.org/10.48550/arxiv.1609.05625,
  doi = {10.48550/ARXIV.1609.05625},
  
  url = {https://arxiv.org/abs/1609.05625},
  
  author = {Ali, Ahmed and Bell, Peter and Glass, James and Messaoui, Yacine and Mubarak, Hamdy and Renals, Steve and Zhang, Yifan},
  
  keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {The MGB-2 Challenge: Arabic Multi-Dialect Broadcast Media Recognition},
  
  publisher = {arXiv},
  
  year = {2016},
  
  copyright = {arXiv.org perpetual, non-exclusive license}
}
"""
_DATA_ARCHIVE_ROOT = "archives/"
_DATA_URL = {
    "test": _DATA_ARCHIVE_ROOT + "mgb2_wav.test.tar.gz",
    "dev": _DATA_ARCHIVE_ROOT + "mgb2_wav.dev.tar.gz",
    "train": [_DATA_ARCHIVE_ROOT + f"mgb2_wav_{x}.train.tar.gz" for x in range(48)], # we have 48 archives
}
_TEXT_URL = {
    "test": _DATA_ARCHIVE_ROOT + "mgb2_txt.test.tar.gz",
    "dev": _DATA_ARCHIVE_ROOT + "mgb2_txt.dev.tar.gz",
    "train": _DATA_ARCHIVE_ROOT + "mgb2_txt.train.tar.gz",
}

class MGDB2Dataset(datasets.GeneratorBasedBuilder):
    def _info(self):
        return datasets.DatasetInfo(
        description=_DESCRIPTION,
        features=datasets.Features(
            {
                "path": datasets.Value("string"),
                "audio": datasets.Audio(sampling_rate=16_000),
                "text": datasets.Value("string"),
            }
        ),
        supervised_keys=None,
        homepage=_HOMEPAGE,
        license=_LICENSE,
        citation=_CITATION,
    )

    def _split_generators(self, dl_manager):
        wav_archive = dl_manager.download(_DATA_URL)
        txt_archive = dl_manager.download(_TEXT_URL)
        test_dir = "dataset/test"
        dev_dir = "dataset/dev"
        train_dir = "dataset/train"

        if dl_manager.is_streaming:
    
            return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "path_to_txt": test_dir + "/txt",
                    "path_to_wav": test_dir + "/wav",
                    "wav_files": [dl_manager.iter_archive(wav_archive['test'])],
                    "txt_files": dl_manager.iter_archive(txt_archive['test']),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "path_to_txt": dev_dir + "/txt",
                    "path_to_wav": dev_dir + "/wav",
                    "wav_files": [dl_manager.iter_archive(wav_archive['dev'])],
                    "txt_files": dl_manager.iter_archive(txt_archive['dev']),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "path_to_txt": train_dir + "/txt",
                    "path_to_wav": train_dir + "/wav",
                    "wav_files": [dl_manager.iter_archive(a) for a in wav_archive['train']],
                    "txt_files": dl_manager.iter_archive(txt_archive['train']),
                },
            ),
        ]
        else:
            return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "path_to_txt": test_dir + "/txt",
                    "path_to_wav": test_dir + "/wav",
                    "wav_files": [dl_manager.extract(wav_archive['test'])],
                    "txt_files": dl_manager.extract(txt_archive['test']),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "path_to_txt": dev_dir + "/txt",
                    "path_to_wav": dev_dir + "/wav",
                    "wav_files": [dl_manager.extract(wav_archive['dev'])],
                    "txt_files": dl_manager.extract(txt_archive['dev']),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "path_to_txt": train_dir + "/txt",
                    "path_to_wav": train_dir + "/wav",
                    "wav_files": [dl_manager.extract(a) for a in wav_archive['train']],
                    "txt_files": dl_manager.extract(txt_archive['train']),
                },
            ),
        ]


    
    def _generate_examples(self, path_to_txt, path_to_wav, wav_files, txt_files):
        """ 
        This assumes that the text directory alphabetically precedes the wav dir
        The file names for wav and text seem to match and are unique
        We can use them for the dictionary matching them
        """
        examples = {}
        id_ = 0
        # need to prepare the transcript - wave map
        for path, f in txt_files:
            if path.find(path_to_txt) > -1:

                wav_path = os.path.split(path)[1].replace("_utf8", "").replace(".txt", ".wav").strip()

                txt = f.read().decode(encoding="utf-8").strip()
                examples[wav_path] = {
                    "text": txt,
                    "path": wav_path,
                }

        for wf in wav_files:
            for path, f in wf:
                if path.find(path_to_wav) > -1:
                    wav_path = os.path.split(path)[1].strip()
                    audio = {"path": path, "bytes": f.read()}
                    yield id_, {**examples[wav_path], "audio": audio}
                    id_ += 1